我正在使用下面的教程来开发一个具有前馈和背景功能的基本神经网络。指向本教程的链接在此处:Python Neural Network Tutorial
import numpy as np
def sigmoid(x):
return 1.0/(1+ np.exp(-x))
def sigmoid_derivative(x):
return x * (1.0 - x)
class NeuralNetwork:
def __init__(self, x, y):
self.input = x
self.weights1 = np.random.rand(self.input.shape[1],4)
self.weights2 = np.random.rand(4,1)
self.y = y
self.output = np.zeros(self.y.shape)
def feedforward(self):
self.layer1 = sigmoid(np.dot(self.input, self.weights1))
self.output = sigmoid(np.dot(self.layer1, self.weights2))
def backprop(self):
# application of the chain rule to find derivative of the loss function with respect to weights2 and weights1
d_weights2 = np.dot(self.layer1.T, (2*(self.y - self.output) * sigmoid_derivative(self.output)))
d_weights1 = np.dot(self.input.T, (np.dot(2*(self.y - self.output) * sigmoid_derivative(self.output), self.weights2.T) * sigmoid_derivative(self.layer1)))
# update the weights with the derivative (slope) of the loss function
self.weights1 += d_weights1
self.weights2 += d_weights2
if __name__ == "__main__":
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
y = np.array([[0],[1],[1],[0]])
nn = NeuralNetwork(X,y)
for i in range(1500):
nn.feedforward()
nn.backprop()
print(nn.output)
我想做的是改变数据集,如果预测的数字是偶数,则返回1,如果相同的数字是奇数,则返回0。因此,我做了以下更改:
if __name__ == "__main__":
X = np.array([[2,4,6,8,10],
[1,3,5,7,9],
[11,13,15,17,19],
[22,24,26,28,30]])
y = np.array([[1],[0],[0],[1]])
nn = NeuralNetwork(X,y)
The output I get is :
[[0.50000001]
[0.50000002]
[0.50000001]
[0.50000001]]
我做错了什么?
发布于 2020-05-24 02:29:07
这里基本上有两个问题:
返回sigmoid(x)*((1.0 - sigmoid(x)))
[9.99626174e-01 3.55126310e-04]
发布于 2020-09-02 23:01:24
只需添加X = X/30
并将网络训练时间延长10倍。这对我来说是一致的。您可以将X
除以30,使每个输入都在0和1之间。您训练它的时间更长,因为它是一个更复杂的数据集。
您的导数很好,因为当您使用导数函数时,它的输入已经是sigmoid(x)
。所以x*(1-x)
就是sigmoid(x)*(1-sigmoid(x))
https://stackoverflow.com/questions/61975704
复制相似问题