首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >通过AWS Lambda使用python代码的EMR spark工作

通过AWS Lambda使用python代码的EMR spark工作
EN

Stack Overflow用户
提问于 2020-07-22 09:53:36
回答 1查看 583关注 0票数 1

我想在触发s3事件后,通过AWS Lambda使用python代码触发电子病历spark作业。如果有人可以分享配置/命令,以从AWS Lambda函数调用电子病历spark作业,我将非常感谢。

EN

回答 1

Stack Overflow用户

发布于 2020-07-22 20:40:42

由于这个问题非常普遍,我将尝试为提供一个示例代码来实现此目的。您必须根据您的实际值更改某些参数。

我通常的做法是将主处理程序函数放在一个文件中,将其命名为lambda_handler.py,并将EMR的所有配置和步骤放在一个名为emr_configuration_and_steps.py的文件中。

请检查下面的lambda_handler.py代码片段

代码语言:javascript
运行
复制
import boto3
import emr_configuration_and_steps
import logging
import traceback

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(levelname)s:%(name)s:%(message)s')


def create_emr(name):
    try:
        emr = boto3.client('emr')
        cluster_id = emr.run_job_flow(
            Name=name,
            VisibleToAllUsers=emr_configuration_and_steps.visible_to_all_users,
            LogUri=emr_configuration_and_steps.log_uri,
            ReleaseLabel=emr_configuration_and_steps.release_label,
            Applications=emr_configuration_and_steps.applications,
            Tags=emr_configuration_and_steps.tags,
            Instances=emr_configuration_and_steps.instances,
            Steps=emr_configuration_and_steps.steps,
            Configurations=emr_configuration_and_steps.configurations,
            ScaleDownBehavior=emr_configuration_and_steps.scale_down_behavior,
            ServiceRole=emr_configuration_and_steps.service_role,
            JobFlowRole=emr_configuration_and_steps.job_flow_role
        )
        logger.info("EMR is created successfully")
        return cluster_id['JobFlowId']
    except Exception as e:
        traceback.print_exc()
        raise Exception(e)


def lambda_handler(event, context):
    logger.info("starting the lambda function for spawning EMR")
    try:
        emr_cluster_id = create_emr('Name of Your EMR')
        logger.info("emr_cluster_id is = " + emr_cluster_id)
    except Exception as e:
        logger.error("Exception at some step in the process  " + str(e))

现在,包含所有配置的第二个文件(emr_configuration_and_steps.py)将如下所示。

代码语言:javascript
运行
复制
visible_to_all_users = True
log_uri = 's3://your-s3-log-path-here/'
release_label = 'emr-5.29.0'
applications = [{'Name': 'Spark'}, {'Name': 'Hadoop'}]
tags = [
    {'Key': 'Project', 'Value': 'Your-Project Name'},
    {'Key': 'Service', 'Value': 'Your-Service Name'},
    {'Key': 'Environment', 'Value': 'Development'}
]

instances = {
    'Ec2KeyName': 'Your-key-name',
    'Ec2SubnetId': 'your-subnet-name',
    'InstanceFleets': [
        {
            "InstanceFleetType": "MASTER",
            "TargetOnDemandCapacity": 1,
            "TargetSpotCapacity": 0,
            "InstanceTypeConfigs": [
                {
                    "WeightedCapacity": 1,
                    "BidPriceAsPercentageOfOnDemandPrice": 100,
                    "InstanceType": "m3.xlarge"
                }
            ],
            "Name": "Master Node"
        },
        {
            "InstanceFleetType": "CORE",
            "TargetSpotCapacity": 8,
            "InstanceTypeConfigs": [
                {
                    "WeightedCapacity": 8,
                    "BidPriceAsPercentageOfOnDemandPrice": 50,
                    "InstanceType": "m3.xlarge"
                }
            ],
            "Name": "Core Node"
        },

    ],
    'KeepJobFlowAliveWhenNoSteps': False
}
steps = [
    {
        'Name': 'Setup Hadoop Debugging',
        'ActionOnFailure': 'TERMINATE_CLUSTER',
        'HadoopJarStep': {
            'Jar': 'command-runner.jar',
            'Args': ['state-pusher-script']
        }
    },
    {
        "Name": "Active Marker for digital panel",
        "ActionOnFailure": 'TERMINATE_CLUSTER',
        'HadoopJarStep': {
            "Jar": "command-runner.jar",
            "Args": [
                "spark-submit",
                "--deploy-mode",
                "cluster",
                "--driver-memory", "4g",
                "--executor-memory", "4g",
                "--executor-cores", "2",
                "--class", "your-main-class-full-path-name",
                "s3://your-jar-path-SNAPSHOT-jar-with-dependencies.jar"
            ]
        }

    }

]

configurations = [
    {
        "Classification": "spark-log4j",
        "Properties": {
            "log4j.logger.root": "INFO",
            "log4j.logger.org": "INFO",
            "log4j.logger.com": "INFO"
        }
    }
]
scale_down_behavior = 'TERMINATE_AT_TASK_COMPLETION'
service_role = 'EMR_DefaultRole'
job_flow_role = 'EMR_EC2_DefaultRole'

请根据您的使用情况调整一定的路径和名称。要部署它,您需要安装boto3并将这两个文件打包/压缩到压缩文件中,然后将其上传到您的lambda函数。这样,您就可以生成EMR了。

票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/63025604

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档