我拼命地试图弄清楚如何打印出我的df中特定值的行索引和列名称。
我有以下df:
raw_data = {'first_name': [NaN, 'Molly', 'Tina', 'Jake', 'Amy'],
'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'],
'age': [42, 52, NaN, 24, 73],
'preTestScore': [4, 24, 31, 33, 3],
'postTestScore': [25, 94, 57, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age',
'preTestScore','postTestScore'])现在我想打印出NaN的索引和列名:
There is a missing value in row 0 for first_name.
There is a missing value in row 2 for age.我已经搜索了很多,总是能找到如何在一行中做一些事情。我的想法是首先创建一个具有False和True的df
na = df.isnull()然后,我想要应用一些函数来打印每个NaN值的行号和col_name。我就是想不出怎么做。
提前感谢您的帮助!
发布于 2020-11-13 04:04:37
由于NaN的原因,我不得不对df做了一些修改。替换为np.nan
import numpy as np
import pandas as pd
raw_data = {'first_name': [np.nan, 'Molly', 'Tina', 'Jake', 'Amy'],
'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'],
'age': [42, 52, np.nan, 24, 73],
'preTestScore': [4, 24, 31, 33, 3],
'postTestScore': [25, 94, 57, 62, 70]}你可以做到的
dfs = df.stack(dropna = False)
[f'There is a missing value in row {i[0]} for {i[1]}' for i in dfs[dfs.isna()].index]打印列表
['There is a missing value in row 0 for first_name',
'There is a missing value in row 2 for age']https://stackoverflow.com/questions/64810857
复制相似问题