我正在使用此代码来检测face_spoofing
import numpy as np
import cv2
import joblib
from face_detector import get_face_detector, find_faces
def calc_hist(img):
"""
To calculate histogram of an RGB image
Parameters
----------
img : Array of uint8
Image whose histogram is to be calculated
Returns
-------
histogram : np.array
The required histogram
"""
histogram = [0] * 3
for j in range(3):
histr = cv2.calcHist([img], [j], None, [256], [0, 256])
histr *= 255.0 / histr.max()
histogram[j] = histr
return np.array(histogram)
face_model = get_face_detector()
clf = joblib.load(0)
cap = cv2.VideoCapture("videos/face_spoofing.mp4")
sample_number = 1
count = 0
measures = np.zeros(sample_number, dtype=np.float)
while True:
ret, img = cap.read()
faces = find_faces(img, face_model)
measures[count%sample_number]=0
height, width = img.shape[:2]
for x, y, x1, y1 in faces:
roi = img[y:y1, x:x1]
point = (0,0)
img_ycrcb = cv2.cvtColor(roi, cv2.COLOR_BGR2YCR_CB)
img_luv = cv2.cvtColor(roi, cv2.COLOR_BGR2LUV)
ycrcb_hist = calc_hist(img_ycrcb)
luv_hist = calc_hist(img_luv)
feature_vector = np.append(ycrcb_hist.ravel(), luv_hist.ravel())
feature_vector = feature_vector.reshape(1, len(feature_vector))
prediction = clf.predict_proba(feature_vector)
prob = prediction[0][1]
measures[count % sample_number] = prob
cv2.rectangle(img, (x, y), (x1, y1), (255, 0, 0), 2)
point = (x, y-5)
# print (measures, np.mean(measures))
if 0 not in measures:
text = "True"
if np.mean(measures) >= 0.7:
text = "False"
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img=img, text=text, org=point, fontFace=font, fontScale=0.9, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
else:
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img=img, text=text, org=point, fontFace=font, fontScale=0.9,
color=(0, 255, 0), thickness=2, lineType=cv2.LINE_AA)
count+=1
cv2.imshow('img_rgb', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
但是我得到了一个错误
I am using the version 0.24.0 for scikit and am on python 3.8 to use tensorflowTraceback (most recent call last):
File "C:/Users/heman/PycharmProjects/ProctorAI/face_spoofing.py", line 29, in <module>
clf = joblib.load('models/face_spoofing.pkl')
File "C:\Users\heman\PycharmProjects\ProctorAI\venv\lib\site-packages\joblib\numpy_pickle.py", line 585, in load
obj = _unpickle(fobj, filename, mmap_mode)
File "C:\Users\heman\PycharmProjects\ProctorAI\venv\lib\site-packages\joblib\numpy_pickle.py", line 504, in _unpickle
obj = unpickler.load()
File "C:\Users\heman\AppData\Local\Programs\Python\Python38\lib\pickle.py", line 1212, in load
dispatch[key[0]](self)
File "C:\Users\heman\AppData\Local\Programs\Python\Python38\lib\pickle.py", line 1528, in load_global
klass = self.find_class(module, name)
File "C:\Users\heman\AppData\Local\Programs\Python\Python38\lib\pickle.py", line 1579, in find_class
__import__(module, level=0)
ModuleNotFoundError: No module named 'sklearn.ensemble.forest'
Process finished with exit code 1
我认为我需要使用之前版本的scikit (0.19.1),但是我得到了error C++ build tools required。我不知道如何安装这些工具,因为我在虚拟环境中,它们已经安装在我的笔记本电脑上了。
请建议我能做些什么
发布于 2021-01-17 21:33:50
sklearn.ensemble.forest
已重命名为sklearn.ensemble._forest
in 437ca05 on Oct 16, 2019。您需要安装较旧的sklearn
。请试用2019年7月30日发布的0.21.3版本:
pip install -U scikit-learn==0.21.3
请注意,作者提供了Python3.7的轮子。对于3.8或3.9,您将需要compile from sources。
发布于 2021-07-23 02:07:46
上面的答案是正确的,sklearn.ensemble.forest
已重命名为sklearn.ensemble._forest
这个问题仍然存在于更多依赖sklearn的库中,因此我想提供一个额外的解决方案,普遍适用于大多数这些包。
在您的例子中,您的库名称为face_detector
,但是当您在版本控制方面遇到此问题时,您可以将其替换为任何库名称(以及其他库)。
导入print(face_detector.\_\_file__) face_detector
在任何文本编辑器中打开
face_detector.py
注释掉旧版本sklearn的import,并添加新的import语句from sklearn.ensemble.forest import ForestClassifier,ForestRegressor from sklearn.ensemble._forest import ForestClassifier,ForestRegressor
注意:可以很容易地修改此解决方案,以跟踪和修复sklearn以外的其他库依赖项的依赖项问题。只要函数本身没有改变输入和输出参数,修复重命名问题是修复损坏的依赖关系的一种简单方法。
发布于 2021-04-26 23:18:33
也许你的模型太旧了。使用:
pip install scikit-learn==0.22
安装旧版本的sklearn。
https://stackoverflow.com/questions/65758102
复制相似问题