我试图为系外行星目录中的数据编写一个决策树方法。这是我的硕士课程之一的恶棍。我在一本木星笔记本上写了这个
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
data = pd.read_csv('exoplanet.eu_catalog_2021.12.15.csv')
data_new = data.select_dtypes(include=['float64'])#Select only dtype float64 data
data_new[~data_new.isin([np.nan, np.inf, -np.inf]).any(1)]
data_new_2 = data_new.loc[:,('mass', 'mass_error_min')]
data_new_2.dropna(subset =["mass_error_min"], inplace = True)
data_new_2.info()
print(data_new_2)
有了这个结果
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1425 entries, 1 to 4892
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 mass 1425 non-null float64
1 mass_error_min 1425 non-null float64
dtypes: float64(2)
memory usage: 33.4 KB
如你所见,没有空的单元格。此外,我写这个是为了把所有的数字转换成float64 (以防万一!)
data_new_2['mass'] = data_new_2['mass'].astype(float)
data_new_2['mass_error_min'] = data_new_2['mass_error_min'].astype(float)
然后,我将数据分割成训练子集和测试子集。
from sklearn.model_selection import train_test_split
X = data_new_2.drop(["mass"], axis = 1)
y = data_new_2["mass"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .30, random_state = 42)
没有问题..。直至本部
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()
classifier.fit(X_train, y_train_2)
因为我收到了这个错误消息
ValueError Traceback (most recent call last)
<ipython-input-327-7b81afce3234> in <module>
1 from sklearn.tree import DecisionTreeClassifier
2 classifier = DecisionTreeClassifier()
----> 3 classifier.fit(X_train, y_train_2)
.
.
.
~/.local/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X, allow_nan, msg_dtype)
104 msg_err.format
105 (type_err,
--> 106 msg_dtype if msg_dtype is not None else X.dtype)
107 )
108 # for object dtype data, we only check for NaNs (GH-13254)
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
我不明白为什么会出现这条错误消息,因为我在X_train或y_train数据中没有Nan、完整性或“太大”的数据。
我能做什么?
发布于 2021-12-13 10:46:56
mass_error_min
列中有一些无限值:
data_new_2.describe()
mass mass_error_min
count 1425.000000 1425.0000
mean 6.060956 inf
std 13.568726 NaN
min 0.000002 0.0000
25% 0.054750 0.0116
50% 0.725000 0.0700
75% 3.213000 0.5300
max 135.300000 inf
因此,您必须用一些值填充这些inf,使用以下代码:
value = data_new_2['mass_error_min'].quantile(0.98)
data_new_2 = data_new_2.replace(np.inf, value)
https://stackoverflow.com/questions/70331502
复制相似问题