我刚刚意识到tfjsv3.13.0中有一个新特性(请参阅https://github.com/tensorflow/tfjs/pull/5953)。我试图使用新的dataToGPU()
张量方法将模型输出保留在GPU上,因为发送数据回CPU的data()
方法在我的用例中花费了太多的时间。但是,当我调用新方法并尝试将它创建的WebGLTexture
绑定到我的WebGLRenderingContext
时,我会得到以下错误。
WebGL: INVALID_OPERATION: bindTexture: object does not belong to this context
我猜这是因为纹理是在一个与我想要绑定纹理的画布不一样的上下文上创建的。因此,为了解决这个问题,似乎还有另外一个特性,它为tfjs的HTMLCanvasElement
后端声明提供了一个OffscreenCanvas
或OffscreenCanvas
(参见https://github.com/tensorflow/tfjs/pull/5983)。但是,我并没有在代码中声明任何后端,所以我不确定如何使用这些特性。
有人能告诉我如何在运行模型时实例化和使用WebGL后端吗?
发布于 2022-01-15 02:01:21
有关如何注册基于后端的自定义webgl
的示例,请参阅GitHub https://github.com/vladmandic/human/blob/main/src/tfjs/humangl.ts上的以下内容
这里添加了此代码的副本,以防上面的链接失败:
/** TFJS custom backend registration */
import type { Human } from '../human';
import { log } from '../util/util';
import * as tf from '../../dist/tfjs.esm.js';
import * as image from '../image/image';
import * as models from '../models';
import type { AnyCanvas } from '../exports';
// import { env } from '../env';
export const config = {
name: 'humangl',
priority: 999,
canvas: <null | AnyCanvas>null,
gl: <null | WebGL2RenderingContext>null,
extensions: <string[]> [],
webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2
alpha: false,
antialias: false,
premultipliedAlpha: false,
preserveDrawingBuffer: false,
depth: false,
stencil: false,
failIfMajorPerformanceCaveat: false,
desynchronized: true,
},
};
function extensions(): void {
/*
https://www.khronos.org/registry/webgl/extensions/
https://webglreport.com/?v=2
*/
const gl = config.gl;
if (!gl) return;
config.extensions = gl.getSupportedExtensions() as string[];
// gl.getExtension('KHR_parallel_shader_compile');
}
/**
* Registers custom WebGL2 backend to be used by Human library
*
* @returns void
*/
export async function register(instance: Human): Promise<void> {
// force backend reload if gl context is not valid
if (instance.config.backend !== 'humangl') return;
if ((config.name in tf.engine().registry) && (!config.gl || !config.gl.getParameter(config.gl.VERSION))) {
log('error: humangl backend invalid context');
models.reset(instance);
/*
log('resetting humangl backend');
await tf.removeBackend(config.name);
await register(instance); // re-register
*/
}
if (!tf.findBackend(config.name)) {
try {
config.canvas = await image.canvas(100, 100);
} catch (err) {
log('error: cannot create canvas:', err);
return;
}
try {
config.gl = config.canvas?.getContext('webgl2', config.webGLattr) as WebGL2RenderingContext;
const glv2 = config.gl.getParameter(config.gl.VERSION).includes('2.0');
if (!glv2) {
log('override: using fallback webgl backend as webgl 2.0 is not detected');
instance.config.backend = 'webgl';
return;
}
if (config.canvas) {
config.canvas.addEventListener('webglcontextlost', async (e) => {
log('error: humangl:', e.type);
log('possible browser memory leak using webgl or conflict with multiple backend registrations');
instance.emit('error');
throw new Error('backend error: webgl context lost');
// log('resetting humangl backend');
// env.initial = true;
// models.reset(instance);
// await tf.removeBackend(config.name);
// await register(instance); // re-register
});
config.canvas.addEventListener('webglcontextrestored', (e) => {
log('error: humangl context restored:', e);
});
config.canvas.addEventListener('webglcontextcreationerror', (e) => {
log('error: humangl context create:', e);
});
}
} catch (err) {
log('error: cannot get WebGL context:', err);
return;
}
try {
tf.setWebGLContext(2, config.gl);
} catch (err) {
log('error: cannot set WebGL context:', err);
return;
}
try {
const ctx = new tf.GPGPUContext(config.gl);
tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);
} catch (err) {
log('error: cannot register WebGL backend:', err);
return;
}
try {
const kernels = tf.getKernelsForBackend('webgl');
kernels.forEach((kernelConfig) => {
const newKernelConfig = { ...kernelConfig, backendName: config.name };
tf.registerKernel(newKernelConfig);
});
} catch (err) {
log('error: cannot update WebGL backend registration:', err);
return;
}
const current = tf.backend().getGPGPUContext ? tf.backend().getGPGPUContext().gl : null;
if (current) {
log(`humangl webgl version:${current.getParameter(current.VERSION)} renderer:${current.getParameter(current.RENDERER)}`);
} else {
log('error: no current gl context:', current, config.gl);
return;
}
try {
tf.ENV.set('WEBGL_VERSION', 2);
} catch (err) {
log('error: cannot set WebGL backend flags:', err);
return;
}
extensions();
log('backend registered:', config.name);
}
}
https://stackoverflow.com/questions/70703710
复制相似问题