print(key_standardized_train.shape)
(26800, 1)
from scipy.sparse import hstack
X_tr=hstack((song_duration_ms_standardized_train,acousticness_standardized_train,danceability_standardized_train))bmat中的************************************************************************* D:\Anaconda3\lib\site-packages\scipy\sparse\construct.py
(块、格式、如果blocks.ndim != 2:-> 547提升ValueError(‘区块必须是2-D') 548 549 M,N= blocks.shape
ValueError:块必须是二维
发布于 2022-01-22 17:37:29
如果要堆栈不稀疏的矩阵,可以使用:
import numpy as np
X_tr = np.hstack(
(song_duration_ms_standardized_train,
acousticness_standardized_train,
danceability_standardized_train)
)
# or
X_tr = np.column_stack(
(song_duration_ms_standardized_train,
acousticness_standardized_train,
danceability_standardized_train)
)用hstack水平地按顺序堆栈数组(按列排列)。https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
将一维数组作为列叠加到带有column_stack的二维数组中.https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack
https://stackoverflow.com/questions/70809884
复制相似问题