我需要重新构造一个数据框架,以便一些变量(Diag1、Diag2、Diag3)变为长wile其他变量(周期)变为wide。基本上他们需要交换位置。
我在下面的示例中重新创建了原始数据。我尝试分别使用透视和熔融,但没有效果,在示例中演示了这一点。
df = pd.DataFrame({
    'ID':[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,],
    'Period':['0 Month','3 Month','0 Month','3 Month','0 Month',
            '3 Month','0 Month','3 Month','0 Month','3 Month','0 Month',
            '3 Month','0 Month','3 Month','0 Month','3 Month','0 Month',
            '3 Month','0 Month','3 Month','0 Month','3 Month',],
    'Diag1':[0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,],
    'Diag2':[0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,],
    'Diag3':[0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,1,0,1,0,]
    })
dfp = df.pivot(index=["ID",], columns='Period',).reset_index()
print(dfp)
dfm = df.melt(id_vars=["ID",],value_vars=['Period'])
print(dfm)预期的结果是:
ID  Diagnosis   0_Month 3_Month
1   Diag1       0       1
1   Diag2       0       0
1   Diag3       0       0
2   Diag1       0       1
2   Diag2       1       0
2   Diag3       1       0
3   Diag1   
3   Diag2   
3   Diag3       etc...我怀疑我需要一些组合的2,但我很难找到任何例子。我的大脑开始融化了.
发布于 2022-03-24 20:50:43
你可以melt,然后是pivot
out = (df.melt(id_vars=['ID', 'Period'], var_name='Diagnosis')
       .pivot(['ID','Diagnosis'], 'Period', 'value')
       .reset_index().rename_axis(columns=[None]))输出:
    ID Diagnosis  0 Month  3 Month
0    1     Diag1        0        1
1    1     Diag2        0        0
2    1     Diag3        0        0
3    2     Diag1        1        0
4    2     Diag2        1        0
..  ..       ...      ...      ...
28  10     Diag2        1        0
29  10     Diag3        1        0
30  11     Diag1        0        0
31  11     Diag2        0        0
32  11     Diag3        1        0
[33 rows x 4 columns]https://stackoverflow.com/questions/71609232
复制相似问题