我正在尝试求解一个耦合的常微分方程组,在python中由7段代码组成,使用solve_ivp或者为RK4实现一个函数。
一般的物理问题如下:光伏模块冷却与换热器耦合的模块。这样,该模块产生电能和热能。
我有一个多项式函数,G(t) = 9.8385e-13*t^4 - 1.82918e-8*t^3 + 5.991355e-05*t^2 + 2.312059e-1*t + 25,它的工作范围为0https://files.fm/u/9y4evkf6c)。
此函数用作ODEs的输入,ODEs作为时间函数表示电气系统和热系统。为了求解电学模型,我创建了一些脚本来求解光伏模块的二极管方程,这个脚本的输出是光伏功率(在PPV热模型中称为),它是模块温度和辐射的函数。这个脚本工作得很好,解决了我的部分问题。我的困难在于求解作为输入参数G(t)和PPV的热模型方程。
这些方程的结果是:
标签:
Tvidro = Tglass = T1
Tcel = Tpv = T2
Ttedlar = T3
标签=吸收器= T4
Ttubo = Ttube = T5
Tfsai = Tfluid_out = T6
Tiso =T绝热= T7
使用RK4的方法/函数,完整的代码如下所示(您可以直接进入“#”部分):
import numpy as np
import matplotlib.pyplot as plt
import csv
from numpy.polynomial.polynomial import polyval
############################################################
with open('directory of data called teste_dados_radiacao',"r") as i:
rawdata = list(csv.reader(i, delimiter = ";"))
exampledata = np.array(rawdata[1:], dtype=float)
xdata = exampledata[:,0]
ydata = exampledata[:,1]
curve = np.array(np.polyfit(xdata, ydata, 4))
rev_curve = np.array(list(reversed(curve)), dtype=float)
print(rev_curve)
#G_ajustado = polyval(xdata, rev_curve)
""" plt.plot(xdata, ydata, label = "dados experimentais")
plt.plot(xdata, model, label = "model")
plt.legend()
plt.show() """
#############################################################
#CONSTANTS
Tamb = 25 #°C #ambient temperatura
SIGMA = 5.67e-8 #W/m2K4
E_VIDRO = 0.90 #between 0.85 e 0.83 #nasrin2017 0.04
VENTO = 2 #m/s
T_GROUND = Tamb + 2 #°C
T_CEU = 0.00552*Tamb**1.5
Vf = 1 #m/s
Do = 10e-3 #m
Di = 8e-3 #m
NS = 6*10 #number of cells
T_F_ENT = 20 #°C
#INPUTS
Tcel = 25
Tv = 25
Tiso = 30
Av = 1.638*0.982
ALPHA_VIDRO = 0.9
L_VIDRO = 3e-3 #m
RHO_VIDRO = 2500 #kg/m3
M_VIDRO = Av*L_VIDRO*RHO_VIDRO #kg
CP_VIDRO = 500 #j/kgK
K_VIDRO = 2 #W/mK
TAU_VIDRO = 0.95
Pac = 0.85
H_CELL = 0.156 #m
A_CELL = NS*H_CELL**2
ALPHA_CELL = 0.9
L_CEL = 3e-3
RHO_CEL = 2330
M_CEL = A_CELL*L_CEL*RHO_CEL #kg - estimated
CP_CEL = 900 #J/kgK
K_CEL = 140 #W/mK
BETA_T = 0.43/100 # %/°C
N_ELE_REF = 0.1368 #13.68%
N_ELE = N_ELE_REF*(1 - BETA_T*(Tcel - 25)) #273 + 25 - tcel kelvin
A_tedlar = Av
L_TEDLAR = 0.33e-3
RHO_TEDLAR = 1500
M_TEDLAR = Av*L_TEDLAR*RHO_TEDLAR
CP_TEDLAR = 1090 #1090 OU 2090
K_TEDLAR = 0.35
ALPHA_TEDLAR = 0.34 #doc nasa ou zero
#parameters
RHO_ABS = 2700
A_ABS = Av
CP_ABS =900
L_ABS = 3e-3 #mm
M_ABS = A_ABS*RHO_ABS*L_ABS
K_ABS = 300
A_ABS_TUBO = 10*1.60*0.01+0.154*9*0.01
A_ABS_ISO = Av-A_ABS_TUBO
RHO_TUBO = 2700
CP_TUBO = 900
N_TUBOS = 10
L_TUBO = N_TUBOS*1.6
M_TUBO = RHO_TUBO*L_TUBO*(3.1415/4)*(Do**2 - Di**2)
K_TUBO = 300
A_TUBO_F = 0.387 #pi*Di*(L*10 VOLTAS + R(156MM)*9)
A_TUBO_ISO = 0.484 #pi*Do*(L*10 VOLTAS + R(156MM)*9)
A_ISO = Av
RHO_ISO = 50
L_ISO = 40e-3
M_ISO = A_ISO*RHO_ISO*L_ISO
CP_ISO = 670
K_ISO = 0.0375
E_ISO = 0.75 #ESTIMATED
RHO_FLUIDO = 997
M_FLUIDO = L_TUBO*(3.1415/4)*Di**2*RHO_FLUIDO
CP_FLUIDO = 4186 #j/kgK
MI_FLUIDO = 0.890e-3 #Pa*s ou N/m2 * s
K_FLUIDO = 0.607
M_PONTO = 0.05 #kg/s ou 0.5 kg/m3
#DIMENSIONLESS
Pr = CP_FLUIDO*MI_FLUIDO/K_FLUIDO #water 25°C
Re = RHO_FLUIDO*Vf*Di/MI_FLUIDO
if (Re<=2300):
Nuf = 4.364
else:
Nuf = 0.023*(Re**0.8)*(Pr*0.4)*Re
#COEFFICIENTS
h_rad_vidro_ceu = SIGMA*E_VIDRO*(Tv**2 - T_CEU)*(Tv + T_CEU)
h_conv_vidro_amb = 2.8 + 3*VENTO
h_conv_tubo_fluido = 0.5*30#Nuf
h_cond_vidro_cel = 1/((L_VIDRO/K_VIDRO) + (L_CEL/K_CEL))
h_cond_cel_tedlar = 1/((L_TEDLAR/K_TEDLAR) + (L_CEL/K_CEL))
h_cond_tedlar_abs = 1/((L_TEDLAR/K_TEDLAR) + (L_ABS/K_ABS))
h_cond_abs_tubo = 1/((L_TUBO/K_TUBO) + (L_ABS/K_ABS))
h_cond_abs_iso = 1/((L_ISO/K_ISO) + (L_ABS/K_ABS))
h_cond_tubo_iso = 1/((L_ISO/K_ISO) + (L_TUBO/K_TUBO))
h_conv_iso_amb = h_conv_vidro_amb
h_rad_iso_ground = SIGMA*E_ISO*(Tiso**2 - T_GROUND**2)*(Tiso + T_GROUND)
#GROUPS
A1 = (1/(M_VIDRO*CP_VIDRO))*(ALPHA_VIDRO*Av)#*G(t)) G_ajustado = polyval(dt,rev_curve)
A2 = (1/(M_VIDRO*CP_VIDRO))*(Av*(h_rad_vidro_ceu + h_conv_vidro_amb + h_cond_vidro_cel))
A3 = (1/(M_VIDRO*CP_VIDRO))*Av*h_cond_vidro_cel
A4 = (1/(M_VIDRO*CP_VIDRO))*Av*(h_conv_vidro_amb + h_rad_vidro_ceu)
A5 = (1/(M_CEL*CP_CEL))*(Pac*A_CELL*TAU_VIDRO*ALPHA_CELL) #*G(t)
A6 = -1*A5*N_ELE #*G(t)
A7 = (1/(M_CEL*CP_CEL))*A_CELL*h_cond_vidro_cel
A8 = (1/(M_CEL*CP_CEL))*A_CELL*(h_cond_vidro_cel + h_cond_cel_tedlar)
A9 = (1/(M_CEL*CP_CEL))*A_CELL*h_cond_cel_tedlar
A10 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*(1 - Pac)*TAU_VIDRO*ALPHA_TEDLAR#G(t)
A11 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*(h_cond_cel_tedlar + h_cond_tedlar_abs)
A12 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*h_cond_cel_tedlar
A13 = (1/(M_TEDLAR*CP_TEDLAR))*A_tedlar*h_cond_tedlar_abs
A14 = (1/(M_ABS*CP_ABS))*A_ABS*h_cond_tedlar_abs
A15 = (1/(M_ABS*CP_ABS))*(A_ABS*h_cond_tedlar_abs + A_ABS_TUBO*h_cond_abs_tubo + A_ABS_ISO*h_cond_abs_iso)
A16 = (1/(M_ABS*CP_ABS))*A_ABS_TUBO*h_cond_abs_tubo
A17 = (1/(M_ABS*CP_ABS))*A_ABS_ISO*h_cond_abs_iso
A18 = (1/(M_TUBO*CP_TUBO))*A_ABS_TUBO*h_cond_abs_tubo
A19 = (1/(M_TUBO*CP_TUBO))*(A_ABS_TUBO*h_cond_abs_tubo + A_TUBO_F*h_conv_tubo_fluido + A_TUBO_ISO*h_cond_tubo_iso)
A20 = (1/(M_TUBO*CP_TUBO))*A_TUBO_F*h_conv_tubo_fluido*0.5
A21 = (1/(M_TUBO*CP_TUBO))*A_TUBO_ISO*h_cond_tubo_iso
A22 = (1/(M_FLUIDO*CP_FLUIDO))*A_TUBO_F*h_conv_tubo_fluido
A23 = (1/(M_FLUIDO*CP_FLUIDO))*(A_TUBO_F*h_conv_tubo_fluido*0.5 + M_PONTO*CP_FLUIDO)
A24 = (1/(M_FLUIDO*CP_FLUIDO))*(T_F_ENT*(M_PONTO*CP_FLUIDO - h_conv_tubo_fluido*A_TUBO_F*0.5))
A25 = (1/(M_ISO*CP_ISO))*A_ABS_ISO*h_cond_abs_iso
A26 = (1/(M_ISO*CP_ISO))*(A_ABS_ISO*h_cond_abs_iso + A_TUBO_ISO*h_cond_tubo_iso + A_ISO*h_conv_iso_amb + A_ISO*h_rad_iso_ground)
A27 = (1/(M_ISO*CP_ISO))*A_TUBO_ISO*h_cond_tubo_iso
A28 = (1/(M_ISO*CP_ISO))*A_ISO*(h_conv_iso_amb*Tamb + h_rad_iso_ground*T_GROUND)
#DEFINE MODEL EQUATIONS - ODES - (GLASS, PV CELL, TEDLAR, ABSORBER, TUBE, FLUID, INSULATION) # dT1dt = A1*G_ajustado - A2*x[0] + A3*x[1] + A4 # dT2dt = A5*G_ajustado - A6*G_ajustado + A7*x[0] - A8*x[1] + A9*x[2]# dT3dt = A10*G_ajustado - A11*x[2] + A12*x[1] +A13*x[3]
def SysEdo(x, k):#tv-x[0] tcel-x[1] ttedlar-x[2] tabs-x[3] ttubo-x[4] tiso-x[5] tfs-x[6]
dT1dt = A1*polyval(k,rev_curve) - A2*x[0] + A3*x[1] + A4
dT2dt = A5*polyval(k,rev_curve) - A6*polyval(k,rev_curve) + A7*x[0] - A8*x[1] + A9*x[2]
dT3dt = A10*polyval(k,rev_curve) - A11*x[2] + A12*x[1] +A13*x[3]
dT4dt = A14*x[2] - A15*x[3] + A16*x[4] + A17*x[5]
dT5dt = A18*x[3] - A19*x[4] + A20*x[6] + A20*T_F_ENT + A21*x[5]
dT6dt = A22*x[4] - A23*x[6] + A24
dT7dt = A25*x[3] - A26*x[5] + A27*x[4] + A28
Tdot = np.array([dT1dt, dT2dt, dT3dt, dT4dt, dT5dt, dT6dt, dT7dt])
return Tdot
#RungeKutta4
def RK4(f, x0, t0, tf, dt):
t = np.arange(t0, tf, dt) #time vector
nt = t.size #lenght of time vector
nx = x0.size #length of state variables?
x = np.zeros((nx,nt)) #initialize 2D vector
x[:,0] = x0 #initial conditions
#RK4 constants
for k in range(nt-1):
k1 = dt*f(t[k], x[:,k],k)
k2 = dt*f(t[k] + dt/2, x[:,k] + k1/2, k)
k3 = dt*f(t[k] + dt/2, x[:,k] + k2/2, k)
k4 = dt*f(t[k] + dt, x[:,k] + k3, k)
dx = (k1 + 2*k2 + 2*k2 + k4)/6
x[:,k+1] = x[:,k] + dx
return x,t
#Define problems
f = lambda t, x, k : SysEdo(x, k)
#initial state - t0 is initial time - tf is final time - dt is time step
x0 = np.array([30, 30, 30, 30, 30, 30, 30])
t0 = 0
tf = 1000
dt = 1
#EDO SOLVE
x, t = RK4(f, x0, t0, tf, dt)
plt.figure()
plt.plot(t, x[0], '-', label='Tvidro')
"""
plt.plot(t, x[1], '-', label='Tpv')
plt.plot(t, x[2], '-', label='Ttedlar')
plt.plot(t, x[3], '-', label='Tabs')
plt.plot(t, x[4], '-', label='Tiso')
plt.plot(t, x[5], '-', label='Ttubo')
plt.plot(t, x[6], '-', label='Tfsai')"""
plt.title('Gráfico')
plt.legend(['Tvidro', 'Tpv', 'Ttedlar', 'Tabs', 'Tiso', 'Ttubo', 'Tfsai'], shadow=False)
plt.xlabel('t (s)')
plt.ylabel('Temperatura (°C)')
plt.xlim(0,20)
plt.ylim(0,150)
plt.grid('on')
plt.show()预先谢谢您,如果有更好的方法使用python或matlab来实现,我也愿意从头开始实现。
发布于 2022-04-27 05:14:05
你可以换掉
x, t = RK4(f, x0, t0, tf, dt)使用
t = arange(t0,tf+0.5*dt,dt)
res = solve_ivp(f,(t0,tf),x0,t_eval=t,args=(k,), method="DOP853", atol=1e-6,rtol=1e-8)
x = res.y[0]根据你的喜好调整最后的3个参数。
https://stackoverflow.com/questions/72022746
复制相似问题