我正在尝试使用星火节约服务器来查询冰山表(外部表包含S3中的数据和Hivemetastore中的元数据)。我能够查询非冰山表,但是当我查询冰山表时,我得到的是以下错误。我们不可以通过星火节约服务器查询冰山表吗?
版本细节
我已经使用以下命令启动了节俭服务器
start-thriftserver.sh \
--hiveconf hive.metastore.uris=thrift://$ip:$port \
--conf spark.hadoop.fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider \
--conf spark.hadoop.fs.s3a.access.key=$key \
--conf spark.hadoop.fs.s3a.secret.key=$secret \
--conf spark.sql.catalog.iceberg_catalog.uri=thrift://$ip:$port \
--conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \
--conf spark.sql.catalog.iceberg_catalog=org.apache.iceberg.spark.SparkSessionCatalog \
--conf spark.sql.catalog.iceberg_catalog.type=hive \
--conf spark.sql.catalog.iceberg_catalog.io-impl=org.apache.iceberg.aws.s3.S3FileIO \
--conf iceberg.engine.hive.enabled=true \
查询冰山表select count(*) from $table_name
时直线错误
Error: org.apache.hive.service.cli.HiveSQLException: Error running query: java.lang.RuntimeException: java.lang.InstantiationException
at org.apache.spark.sql.hive.thriftserver.HiveThriftServerErrors$.runningQueryError(HiveThriftServerErrors.scala:44)
at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:325)
at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.$anonfun$run$2(SparkExecuteStatementOperation.scala:230)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.hive.thriftserver.SparkOperation.withLocalProperties(SparkOperation.scala:79)
at org.apache.spark.sql.hive.thriftserver.SparkOperation.withLocalProperties$(SparkOperation.scala:63)
at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.withLocalProperties(SparkExecuteStatementOperation.scala:43)
at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:230)
at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:225)
at java.base/java.security.AccessController.doPrivileged(Native Method)
at java.base/javax.security.auth.Subject.doAs(Subject.java:423)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1878)
at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2.run(SparkExecuteStatementOperation.scala:239)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.lang.RuntimeException: java.lang.InstantiationException
at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:137)
at org.apache.spark.rdd.HadoopRDD.getInputFormat(HadoopRDD.scala:191)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:205)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
at org.apache.spark.rdd.RDD.getNumPartitions(RDD.scala:316)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture$lzycompute(ShuffleExchangeExec.scala:140)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture(ShuffleExchangeExec.scala:139)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$submitShuffleJob$1(ShuffleExchangeExec.scala:68)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:222)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:219)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.submitShuffleJob(ShuffleExchangeExec.scala:68)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.submitShuffleJob$(ShuffleExchangeExec.scala:67)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.submitShuffleJob(ShuffleExchangeExec.scala:115)
at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.shuffleFuture$lzycompute(QueryStageExec.scala:170)
at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.shuffleFuture(QueryStageExec.scala:170)
at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.doMaterialize(QueryStageExec.scala:172)
at org.apache.spark.sql.execution.adaptive.QueryStageExec.materialize(QueryStageExec.scala:82)
at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$5(AdaptiveSparkPlanExec.scala:256)
at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$5$adapted(AdaptiveSparkPlanExec.scala:254)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$1(AdaptiveSparkPlanExec.scala:254)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.getFinalPhysicalPlan(AdaptiveSparkPlanExec.scala:226)
at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.withFinalPlanUpdate(AdaptiveSparkPlanExec.scala:365)
at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.executeCollect(AdaptiveSparkPlanExec.scala:338)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715)
at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2971)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2971)
at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:300)
... 16 more
Caused by: java.lang.InstantiationException
at java.base/jdk.internal.reflect.InstantiationExceptionConstructorAccessorImpl.newInstance(InstantiationExceptionConstructorAccessorImpl.java:48)
at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:490)
at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:135)
... 75 more (state=,code=0)
发布于 2022-06-14 21:04:28
根据您的配置,您似乎试图使用名为iceberg_catalog
的目录,但它被配置为Iceberg的SparkSessionCatalog
。
但是,SparkSessionCatalog
是为Spark使用的默认目录保留的,这允许将该目录与Iceberg表和其他格式一起使用。
会话目录必须命名为spark_catalog
。这是星火施加的要求。
因此,您需要将org.apache.iceberg.SparkCatalog
与名为iceberg_catalog
的单独目录的当前配置一起使用(名称由您决定),或者如果您希望覆盖默认目录,以便Iceberg表和非Iceberg表可以在一个目录中生存,则需要将目录名更改为spark_catalog
并保留当前配置。
请参考添加目录上的文档。在这里使用的配置中,会话目录spark_catalog
被重写,然后还有一个名为local
的目录,它是不同的,只能有Iceberg表。
发布于 2022-06-15 10:11:53
如果您通过Spark/Beeline创建了一个表,并且您可以看到该表,但不能看到Hive中存在的表,这通常意味着Spark没有配置为使用Hive亚稳态。
在Spark1.6中,默认情况下,Thrift服务器在多会话模式下运行.这意味着每个JDBC/ODBC连接都拥有自己的SQL配置和临时函数注册表的副本。缓存的表仍然是共享的。您正在注册一个临时表,因此,为了查看临时表,您需要以单会话模式运行Thrift服务器。在spark-default.conf中,将spark.sql.hive.thriftServer.singleSession设置为true。当您在代码中调用Th深层服务器的实例时,它应该在单会话模式下启动。初始化和注册临时表时,当您连接并发出显示表命令时,它应该会显示出来。您可以创建一个永久表,在这种情况下,它应该以多会话模式显示,并从Hive中显示出来(您有代码可以这样做,但是它被注释掉了)。在沙箱上的/usr/hdp/current//conf下:
[root@sandbox conf]# cat hive-site.xml
<configuration>
<property>
<name>hive.metastore.uris</name>
<value>thrift://sandbox.hortonworks.com:9083</value>
</property>
</configuration>
https://stackoverflow.com/questions/72620351
复制相似问题