首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >ValueError:找不到打开带有iomode‘`ri`的<Pathname>的后端

ValueError:找不到打开带有iomode‘`ri`的<Pathname>的后端
EN

Stack Overflow用户
提问于 2022-06-26 22:26:06
回答 1查看 531关注 0票数 -1

我正在尝试使用LFW数据集运行一个深度学习算法。当我试图运行代码时,我将收到下面列出的路径名的错误消息:

代码语言:javascript
运行
复制
ValueError: Could not find a backend to open `C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_LFW-CARE/LFW-DeepF-ADT/LFW-DeepF-ADT-Training\Abdullah_Gul\desktop.ini`` with iomode `ri`.

我检查了图像,但没有发现有什么问题。要使代码成功运行,还需要检查或添加什么?它们是.jpg图像,图像来自LFW-深漏斗图像.

代码张贴如下:

代码语言:javascript
运行
复制
# Import the packages
from matplotlib import pyplot
import matplotlib.pyplot as plt
from pipeline.nn.conv import mini_lenet
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, \
    f1_score
from pipeline.callbacks import train
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.optimizers import SGD
from keras.utils.np_utils import to_categorical
from image_dataset_loader import load
import numpy as np
import argparse
from sklearn.model_selection import train_test_split
import os
import tensorflow as tf

# Construct the argument parser
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True, help="path to output model")
ap.add_argument("-o", "--output", required=True, help="path to output directory (logs, plots, etc.)")
args = vars(ap.parse_args())

# Loading FERET Dataset
print("[INFO] loading LFW Dataset...")

# Josh Plan 1 Pathway: LeNet (LFW/CARE)
# mainPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_LFW-CARE/Plan1-DL-LFW-CARE/Images_LeNet-LFW-A/"
# trainPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_LFW-CARE/Plan1-DL-LFW-CARE/Images_LeNet-LFW-A/Josh_Training_ADT_8I_100S_227"
# testPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_LFW-CARE/Plan1-DL-LFW-CARE/Images_LeNet-LFW-A/Josh_Testing_ADT_100S_227"

mainPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_LFW-CARE/LFW-DeepF-ADT"
trainPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_LFW-CARE/LFW-DeepF-ADT/LFW-DeepF-ADT-Training"
testPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_LFW-CARE/LFW-DeepF-ADT/LFW-DeepF-ADT-Testing"
(xtrain, ytrain), (xtest, ytest) = load(mainPath, [trainPath, testPath])

# Josh Plan 1 Pathway: LeNet (FERET)
#mainPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_FERET/Plan1-DL/Images_LeNet"
#trainPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_FERET/Plan1-DL/Images_LeNet/Josh_Training_CHD_8I_24S_227"
#testPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_FERET/Plan1-DL/Images_LeNet/Josh_Testing_CHD_24S_227"
#(xtrain, ytrain), (xtest, ytest) = load(mainPath, [trainPath, testPath])

# Plot first few images
for i in range(9):
    # define subplot
    pyplot.subplot(330 + 1 + i)
    pyplot.imshow(xtest[i])

# Show the figure
pyplot.show()

LeNet = Sequential()
LeNet.add(Conv2D(6, (5, 5), strides=(1, 1), padding='valid', activation='relu',
                 input_shape=(227, 227, 3)))
LeNet.add(MaxPool2D((2, 2), (2, 2)))
LeNet.add(Conv2D(16, (5, 5), (1, 1), padding='valid', activation='relu'))
LeNet.add(MaxPool2D((2, 2), (2, 2)))
LeNet.add(Conv2D(120, (5, 5), (1, 1), padding='valid', activation='relu'))
LeNet.add(Flatten())
LeNet.add(Dense(84, activation='relu'))
LeNet.add(Dense(2, activation='softmax'))

# model.compile(optimizer='adam', loss=keras.losses.binary_crossentropy, metrics=['accuracy'])
LeNet.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy',
              metrics=["accuracy"])

LeNet.summary()

# Construct the argument parser
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True, help="path to output model")
ap.add_argument("-o", "--output", required=True, help="path to output directory (logs, plots, etc.)")
args = vars(ap.parse_args())

# Dimension of the FERET dataset
print('----- Dimension of LFW Dataset -----')
print("The shape of the training image:", xtrain.shape)
print("The shape of testing image: ", xtest.shape)
print("Shape of a single image: ", xtest[0].shape)
print('-----------------------------------------')

# Number of epoches & learning rate I use
num_EPOCHS = 75
learn_rate = 5e-3


def decay_poly(epoch):
    epochMax = num_EPOCHS
    learn_rateBase = learn_rate
    power = 1.0

    # compute the new learning rate based on polynomial decay
    alpha = learn_rateBase * (1 - (epoch / float(epochMax))) ** power

    # return the new learning rate
    return alpha


# Print out first test to make sure we can see images
xtrain = xtrain.astype("float32")
xtest = xtest.astype("float32")

# apply mean subtraction to the data
mean = np.mean(xtrain, axis=0)
xtrain -= mean
xtest -= mean

# Train-validation-test split
xtrain, x_val, ytrain, y_val = train_test_split(xtrain, ytrain, test_size=.12)
print('')

# Dimension of the FERET dataset
# print('Dimension of FERET Dataset')
print('Dimension of LFW Dataset with validation')
print((xtrain.shape, ytrain.shape))
print((x_val.shape, y_val.shape))
print((xtest.shape, ytest.shape))

# Since we have 10 classes we should expect the shape[1] of ytrain,y_val and ytest to change from 1 to 10
ytrain = to_categorical(ytrain)
y_val = to_categorical(y_val)
ytest = to_categorical(ytest)
print('')

print('Verifying the dimension after one hot encoding')
print((xtrain.shape, ytrain.shape))
print((x_val.shape, y_val.shape))
print((xtest.shape, ytest.shape))

# Image Data Augmentation
train_generator = ImageDataGenerator(rotation_range=2, horizontal_flip=True, zoom_range=.1)
val_generator = ImageDataGenerator(rotation_range=2, horizontal_flip=True, zoom_range=.1)
test_generator = ImageDataGenerator(rotation_range=2, horizontal_flip=True, zoom_range=.1)

# Fitting the augmentation defined above to the data
# train_generator.fit(xtrain.reshape(-1, 227, 227, None))
# val_generator.fit(x_val.reshape(-1, 227, 227, None))
# test_generator.fit(xtest.reshape(-1, 227, 227, None))

train_generator.fit(xtrain)
val_generator.fit(x_val)
test_generator.fit(xtest)

# Construct the image generator for data augmentation
aug = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1,
                         horizontal_flip=True, fill_mode="nearest")

# Construct the set of callbacks
figPath = os.path.sep.join([args["output"], "{}.jpg".format(os.getpid())])
jsonPath = os.path.sep.join([args["output"], "{}.json".format(os.getpid())])
callbacks = [train(figPath, jsonPath=jsonPath),
             LearningRateScheduler(decay_poly)]
print('')

# Initialize the optimizer and model
print("[INFO] compiling model...")
opt = SGD(lr=learn_rate, momentum=0.9)
LeNet = mini_lenet.build(width=227, height=227, depth=3, classes=100) # LFW
# LeNet = mini_lenet.build(width=227, height=227, depth=3, classes=24) # FERET
LeNet.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
LeNet.evaluate(xtest, ytest)

# Train the network
print("[INFO] training network...")
LeNet.fit(aug.flow(xtrain, ytrain, batch_size=25),
          validation_data=(xtest, ytest), steps_per_epoch=len(xtrain) // 64,
          epochs=num_EPOCHS, callbacks=callbacks, verbose=1)

# Plotting the training and validation loss
f, ax = plt.subplots(1, 1)  # Creates 2 subplots under 1 column

# Assigning the first subplot to graph training loss and validation loss
ax.plot(LeNet.history.history['loss'], color='b', label='Training Loss')
ax.plot(LeNet.history.history['val_loss'], color='r', label='Validation Loss')
ax.set_title('Training & Validation Loss Graph')
plt.legend()
plt.show()

# Plotting the training and validation accuracy
f, ax = plt.subplots(1, 1)  # Creates 2 subplots under 1 column

# Plotting the training accuracy and validation accuracy
ax.plot(LeNet.history.history['accuracy'], color='b', label='Training Accuracy')
ax.plot(LeNet.history.history['val_accuracy'], color='r', label='Validation Accuracy')
ax.set_title('Training & Validation Accuracy Graph')
plt.legend()
plt.show()


# Defining function for confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, classes,
                          normalize=False,
                          title=None,
                          cmap=plt.cm.Blues):
    if not title:
        if normalize:
            title = 'Normalized confusion matrix'
        else:
            title = 'Confusion matrix, without normalization'

    # Compute confusion matrix
    cm = confusion_matrix(y_true, y_pred)
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')
    print(cm)

    # Print Confusion matrix
    fig, ax = plt.subplots(figsize=(5, 5))
    im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
    ax.figure.colorbar(im, ax=ax)
    # We want to show all ticks...
    ax.set(xticks=np.arange(cm.shape[1]),
           yticks=np.arange(cm.shape[0]),
           xticklabels=classes, yticklabels=classes,
           title=title,
           ylabel='True label',
           xlabel='Predicted label')

    # Rotate the tick labels and set their alignment.
    plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
             rotation_mode="anchor")
    # Loop over data dimensions and create text annotations.
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i in range(cm.shape[0]):
        for j in range(cm.shape[1]):
            ax.text(j, i, format(cm[i, j], fmt),
                    ha="center", color="white"
                if cm[i, j] > thresh else "black")
    plt.tight_layout()
    return ax

# Making prediction
xtest_arg = np.argmax(ytest, axis=1)
y_pred = np.argmax(LeNet.predict(xtest), axis=1)
y_true = np.argmax(ytest, axis=1)

print(y_pred)
print(y_pred.shape)
EN

回答 1

Stack Overflow用户

发布于 2022-06-27 03:41:02

我找到了解决办法。

在培训文件夹中有一个名为"Desktop.ini“的文件。一旦我删除它们并运行代码,它就成功运行了。

票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/72765555

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档