首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >需要在Google中创建条件叠加条形图

需要在Google中创建条件叠加条形图
EN

Stack Overflow用户
提问于 2022-07-01 06:25:40
回答 1查看 336关注 0票数 1

我有SEO数据,需要创建一个堆叠条形图与它。我有登陆页面(URL),我需要将它们分为4类。

  1. 按点击将着陆页分类为前1-3页;4-10、11-20、21-100相同.
  2. 然后,我需要创建这个视图的堆叠条形图。样本图表附后:

需要在X轴上的月份,X轴上的总视图数。

我已经生成了随机数据这里来创建样本图表。希望这就足够了。

EN

回答 1

Stack Overflow用户

发布于 2022-07-02 09:21:33

对于分组项的分类,必须进行一些预处理。无法做到这一点。

可能的方法可以在BigQuery,Sheets (枢轴)中完成。Data中的一种方法是通过PERCENTILE与一个自我混合的方法相结合,获得排名(例如,点击次数的前10% ),而不是顶级访问站点。

由于您添加了标签“自定义可视化”,这里有一个方法来做它的织女星插件。

首先将社区可视化"Vega/Vega“添加到您的报告中。

dateLanding page作为维度添加,而指标是单击的总和。

在style选项卡中添加以下Vega代码:

代码语言:javascript
运行
复制
{
  "$schema": "https://vega.github.io/schema/vega-lite/v5.json",

  "data": 
    {
      "values": [
{"$dimension0": "Jan 18, 2022", "$dimension1": "abs", "$metric0": 3},
{"$dimension0": "Jan 19, 2022", "$dimension1": "jsofj", "$metric0": 1},
{"$dimension0": "Jan 20, 2022", "$dimension1": "hfkh", "$metric0": 5},
{"$dimension0": "Jan 21, 2022", "$dimension1": "iefi", "$metric0": 7},
{"$dimension0": "Jan 21, 2022", "$dimension1": "eil", "$metric0": 2},
{"$dimension0": "Jan 18, 2022", "$dimension1": "vnwso", "$metric0": 5},
{"$dimension0": "Jan 24, 2022", "$dimension1": "ojjvl", "$metric0": 6},
{"$dimension0": "Jan 31, 2022", "$dimension1": "vgoe", "$metric0": 8},
{"$dimension0": "Jan 26, 2022", "$dimension1": "abs", "$metric0": 1},
{"$dimension0": "Jan 27, 2022", "$dimension1": "jsofj", "$metric0": 6},
{"$dimension0": "Jan 18, 2022", "$dimension1": "hfkh", "$metric0": 9},
{"$dimension0": "Jan 19, 2022", "$dimension1": "iefi", "$metric0": 4},
{"$dimension0": "Jan 21, 2022", "$dimension1": "eil", "$metric0": 3},
{"$dimension0": "Jan 31, 2022", "$dimension1": "vnwso", "$metric0": 2},
{"$dimension0": "Feb 1, 2022", "$dimension1": "ojjvl", "$metric0": 5},
{"$dimension0": "Feb 2, 2022", "$dimension1": "olwoe", "$metric0": 4},
{"$dimension0": "Feb 3, 2022", "$dimension1": "vgoe", "$metric0": 7},
{"$dimension0": "Feb 4, 2022", "$dimension1": "abs", "$metric0": 9},
{"$dimension0": "Feb 5, 2022", "$dimension1": "jsofj", "$metric0": 3},
{"$dimension0": "Jan 21, 2022", "$dimension1": "hfkh", "$metric0": 1},
{"$dimension0": "Jan 21, 2022", "$dimension1": "iefi", "$metric0": 2},
{"$dimension0": "Feb 8, 2022", "$dimension1": "eil", "$metric0": 5},
{"$dimension0": "Jan 20, 2022", "$dimension1": "vnwso", "$metric0": 8},
{"$dimension0": "Feb 10, 2022", "$dimension1": "ojjvl", "$metric0": 15},
{"$dimension0": "Jan 18, 2022", "$dimension1": "olwoe", "$metric0": 11},
{"$dimension0": "Feb 12, 2022", "$dimension1": "vgoe", "$metric0": 16},
{"$dimension0": "Jan 31, 2022", "$dimension1": "abs", "$metric0": 12},
{"$dimension0": "Jan 19, 2022", "$dimension1": "jsofj", "$metric0": 13},
{"$dimension0": "Feb 15, 2022", "$dimension1": "hfkh", "$metric0": 14},
{"$dimension0": "Feb 16, 2022", "$dimension1": "iefi", "$metric0": 10},
{"$dimension0": "Feb 17, 2022", "$dimension1": "eil", "$metric0": 5},
{"$dimension0": "Jan 31, 2022", "$dimension1": "jsofj", "$metric0": 8},
{"$dimension0": "Jan 18, 2022", "$dimension1": "hfkh", "$metric0": 7},
{"$dimension0": "Jan 21, 2022", "$dimension1": "iefi", "$metric0": 6},
{"$dimension0": "Jan 21, 2022", "$dimension1": "eil", "$metric0": 3},
{"$dimension0": "Jan 19, 2022", "$dimension1": "shf", "$metric0": 4},
{"$dimension0": "Jan 21, 2022", "$dimension1": "jildo", "$metric0": 3},
{"$dimension0": "Jan 31, 2022", "$dimension1": "kahif", "$metric0": 2},
{"$dimension0": "Feb 1, 2022", "$dimension1": "ikhqfl", "$metric0": 5},
{"$dimension0": "Feb 2, 2022", "$dimension1": "hqifkql", "$metric0": 4},
{"$dimension0": "Jan 19, 2022", "$dimension1": "guwk", "$metric0": 4},
{"$dimension0": "Jan 21, 2022", "$dimension1": "qfhuw", "$metric0": 3},
{"$dimension0": "Jan 31, 2022", "$dimension1": "ihqo3", "$metric0": 2},
{"$dimension0": "Feb 1, 2022", "$dimension1": "wfoj", "$metric0": 5}
      ]
    },
       "transform": [
 {
"joinaggregate": [{"op":"sum","field":"$metric0","as":"counts"}],"groupby": ["$dimension1"]
},
{
"sort":[{"field":"counts","order": "descending"},{"field":"$dimension1","order": "descending"}],
"window":[{"op": "row_number","as": "rownum"},{
      "op": "lead","field":"$dimension1","as": "last"}]
},
{
"calculate": " datum.last == datum.$dimension1 ? 0 : 1 ", "as": "adding"
},
{
"sort":[{"field":"rownum","order": "ascending"}],
"window":[{"op":"sum","field":"adding","as": "TOPs"}]
},

{
"calculate": " datum.TOPs<3 ? 'Top 1-3' : datum.TOPs<10 ? 'Top 4-10' : datum.TOPs<20 ? 'Top 11-20'  : 'Top 21-100'  ", "as": "TOPid"
} 

]

,
"mark": {"type": "bar"},
"encoding": {
"x": {
"field": "$dimension0",
"type": "ordinal",
"title": "$dimension0.name"},
"y": {
"field": "$metric0",
"type": "quantitative",
"axis": {"title": "$metric0.name"},
"aggregate": "sum"
},
"color":{
"field":  "TOPid",
"scale": {
"domain": ["Top 1-3", "Top 4-10", "Top 11-20", "Top 20-100"],
"range": ["blue", "lightblue", "#00a", "yellow"]
 }
} ,
"order": { "field": "TOPs"}
}
}

它还可以在:https://vega.github.io/editor/#/edited下查看和开发。

如果您需要按日期计算的顶级组,而不是全局的,请使用此版本。

代码语言:javascript
运行
复制
{
  "$schema": "https://vega.github.io/schema/vega-lite/v5.json",

  "data": 
    {
      "values": [
{"$dimension0": "Jan 18, 2022", "$dimension1": "abs", "$metric0": 3},
{"$dimension0": "Jan 19, 2022", "$dimension1": "jsofj", "$metric0": 1},
{"$dimension0": "Jan 20, 2022", "$dimension1": "hfkh", "$metric0": 5},
{"$dimension0": "Jan 21, 2022", "$dimension1": "iefi", "$metric0": 7},
{"$dimension0": "Jan 21, 2022", "$dimension1": "eil", "$metric0": 2},
{"$dimension0": "Jan 18, 2022", "$dimension1": "vnwso", "$metric0": 5},
{"$dimension0": "Jan 24, 2022", "$dimension1": "ojjvl", "$metric0": 6},
{"$dimension0": "Jan 31, 2022", "$dimension1": "vgoe", "$metric0": 8},
{"$dimension0": "Jan 26, 2022", "$dimension1": "abs", "$metric0": 1},
{"$dimension0": "Jan 27, 2022", "$dimension1": "jsofj", "$metric0": 6},
{"$dimension0": "Jan 18, 2022", "$dimension1": "hfkh", "$metric0": 9},
{"$dimension0": "Jan 19, 2022", "$dimension1": "iefi", "$metric0": 4},
{"$dimension0": "Jan 21, 2022", "$dimension1": "eil", "$metric0": 3},
{"$dimension0": "Jan 31, 2022", "$dimension1": "vnwso", "$metric0": 2},
{"$dimension0": "Feb 1, 2022", "$dimension1": "ojjvl", "$metric0": 5},
{"$dimension0": "Feb 2, 2022", "$dimension1": "olwoe", "$metric0": 4},
{"$dimension0": "Feb 3, 2022", "$dimension1": "vgoe", "$metric0": 7},
{"$dimension0": "Feb 4, 2022", "$dimension1": "abs", "$metric0": 9},
{"$dimension0": "Feb 5, 2022", "$dimension1": "jsofj", "$metric0": 3},
{"$dimension0": "Jan 21, 2022", "$dimension1": "hfkh", "$metric0": 1},
{"$dimension0": "Jan 21, 2022", "$dimension1": "iefi", "$metric0": 2},
{"$dimension0": "Feb 8, 2022", "$dimension1": "eil", "$metric0": 5},
{"$dimension0": "Jan 20, 2022", "$dimension1": "vnwso", "$metric0": 8},
{"$dimension0": "Feb 10, 2022", "$dimension1": "ojjvl", "$metric0": 15},
{"$dimension0": "Jan 18, 2022", "$dimension1": "olwoe", "$metric0": 11},
{"$dimension0": "Feb 12, 2022", "$dimension1": "vgoe", "$metric0": 16},
{"$dimension0": "Jan 31, 2022", "$dimension1": "abs", "$metric0": 12},
{"$dimension0": "Jan 19, 2022", "$dimension1": "jsofj", "$metric0": 13},
{"$dimension0": "Feb 15, 2022", "$dimension1": "hfkh", "$metric0": 14},
{"$dimension0": "Feb 16, 2022", "$dimension1": "iefi", "$metric0": 10},
{"$dimension0": "Feb 17, 2022", "$dimension1": "eil", "$metric0": 5},
{"$dimension0": "Jan 31, 2022", "$dimension1": "jsofj", "$metric0": 8},
{"$dimension0": "Jan 18, 2022", "$dimension1": "hfkh", "$metric0": 7},
{"$dimension0": "Jan 21, 2022", "$dimension1": "iefi", "$metric0": 6},
{"$dimension0": "Jan 21, 2022", "$dimension1": "eil", "$metric0": 3},
{"$dimension0": "Jan 19, 2022", "$dimension1": "shf", "$metric0": 4},
{"$dimension0": "Jan 21, 2022", "$dimension1": "jildo", "$metric0": 3},
{"$dimension0": "Jan 31, 2022", "$dimension1": "kahif", "$metric0": 2},
{"$dimension0": "Feb 1, 2022", "$dimension1": "ikhqfl", "$metric0": 5},
{"$dimension0": "Feb 2, 2022", "$dimension1": "hqifkql", "$metric0": 4},
{"$dimension0": "Jan 19, 2022", "$dimension1": "guwk", "$metric0": 4},
{"$dimension0": "Jan 21, 2022", "$dimension1": "qfhuw", "$metric0": 3},
{"$dimension0": "Jan 31, 2022", "$dimension1": "ihqo3", "$metric0": 2},
{"$dimension0": "Feb 1, 2022", "$dimension1": "wfoj", "$metric0": 5}
      ]
    },
       "transform": [
 {
"joinaggregate": [{"op":"sum","field":"$metric0","as":"counts"}],"groupby": ["$dimension1","$dimension0"]
},
{
"sort":[{"field":"counts","order": "descending"},{"field":"$dimension1","order": "descending"}],
"window":[{"op": "row_number","as": "rownum"},{
      "op": "lead","field":"$dimension1","as": "last"}],
"groupby": ["$dimension0"]
},
{
"calculate": " datum.last == datum.$dimension1 || datum.rownum==1 ? 0 : 1 ", "as": "adding"
},
{
"sort":[{"field":"rownum","order": "ascending"}],
"window":[{"op":"sum","field":"adding","as": "TOPs"}],
"groupby": ["$dimension0"]
},

{
"calculate": " datum.TOPs<3 ? 'Top 1-3' : datum.TOPs<10 ? 'Top 4-10' : datum.TOPs<20 ? 'Top 11-20'  : 'Top 21-100'  ", "as": "TOPid"
} 

]

,
"mark": {"type": "bar"},
"encoding": {
"x": {
"field": "$dimension0",
"type": "ordinal",
"title": "$dimension0.name"},
"y": {
"field": "$metric0",
"type": "quantitative",
"axis": {"title": "$metric0.name"},
"aggregate": "sum"
},
"color":{
"field":  "TOPid",
"scale": {
"domain": ["Top 1-3", "Top 4-10", "Top 11-20", "Top 20-100"],
"range": ["blue", "lightblue", "#00a", "yellow"]
 }
} ,
"order": { "field": "TOPs"}
}
}

这是Vega Lite代码:

  • “数据”是指有一些样本数据。
  • “转换”完成所有所需的转换
  • “联合聚合”:通过“登陆页”获取所有单击的总和。
  • 接下来,我们需要为这些值生成一个自定义排序TOPs
  • “排序”/“窗口”:将表从点击次数最多的地方排序到最少的点击次数。然后,“窗口”将“登陆页”更改为前一行。
  • “计算”设置为1,如果“着陆页”与前一行更改
  • “排序”/“窗口”:总结这些值。这是自定义的排名TOPs
  • “计算”:将自定义排名TOPs划分为顶级组(前1-3、前4-20等等,并将其命名为TOPid )。
  • “标记”:Barplot
  • “编码”:设置桶形图的字段
  • "x","y":x和y轴的定义
  • “颜色”:在这里,TOPid定义了叠加的地块。测试时请使用TOPs
  • “比例”:设置叠加情节的颜色。为了测试,请移除这个。
  • " order ":设置顺序,使用TOPs,因为TOPid是字符串名,因此没有所需的顺序。
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/72825156

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档