首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >深度排序并不是跟踪所有的类,如何完成我的跟踪器yolov5+deepsort

深度排序并不是跟踪所有的类,如何完成我的跟踪器yolov5+deepsort
EN

Stack Overflow用户
提问于 2022-07-06 08:03:27
回答 2查看 413关注 0票数 -1

当我运行detect.py时,detect.py是检测完美的,但不幸的是,使用深度排序,track.py没有跟踪,甚至没有用跟踪器检测。如何设置参数我的跟踪器?

yolov5:

代码语言:javascript
运行
复制
>> python detect.py --source video.mp4 --weights best.pt 

yolov5+deepsort:

代码语言:javascript
运行
复制
>> python track.py --yolo-weights best.pt --source video.mp4 --strong-sort-weights osnet_x0_25_msmt17.pt --show-vid --imgsz 640 --hide-labels 
代码语言:javascript
运行
复制
import argparse
from email.headerregistry import ContentDispositionHeader

import os

from pkg_resources import fixup_namespace_packages
# limit the number of cpus used by high performance libraries
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"

import sys
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'

if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
    sys.path.append(str(ROOT / 'yolov5'))  # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
    sys.path.append(str(ROOT / 'strong_sort'))  # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import logging
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.dataloaders import VID_FORMATS, LoadImages, LoadStreams
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_coords, check_requirements, cv2,
                                  check_imshow, xyxy2xywh, increment_path, strip_optimizer, colorstr, print_args, check_file)
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors, save_one_box
from strong_sort.utils.parser import get_config
from strong_sort.strong_sort import StrongSORT

# remove duplicated stream handler to avoid duplicated logging
logging.getLogger().removeHandler(logging.getLogger().handlers[0])
list_ball_cord = list()
@torch.no_grad()
def run(
        source='0',
        yolo_weights=WEIGHTS / 'yolov5m.pt',  # model.pt path(s),
        strong_sort_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt',  # model.pt path,
        config_strongsort=ROOT / 'strong_sort/configs/strong_sort.yaml',
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        show_vid=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        save_vid=False,  # save confidences in --save-txt labels
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/track',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        hide_class=False,  # hide IDs
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):

    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    if not isinstance(yolo_weights, list):  # single yolo model
        exp_name = str(yolo_weights).rsplit('/', 1)[-1].split('.')[0]
    elif type(yolo_weights) is list and len(yolo_weights) == 1:  # single models after --yolo_weights
        exp_name = yolo_weights[0].split(".")[0]
    else:  # multiple models after --yolo_weights
        exp_name = 'ensemble'
    exp_name = name if name is not None else exp_name + "_" + str(strong_sort_weights).split('/')[-1].split('.')[0]
    save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok)  # increment run
    (save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(yolo_weights, device=device, dnn=dnn, data=None, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    if webcam:
        show_vid = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        nr_sources = len(dataset)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        nr_sources = 1
    vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources

    # initialize StrongSORT
    cfg = get_config()
    cfg.merge_from_file(opt.config_strongsort)


    # Create as many strong sort instances as there are video sources
    strongsort_list = []
    for i in range(nr_sources):
        strongsort_list.append(
            StrongSORT(
                strong_sort_weights,
                device,
                max_dist=cfg.STRONGSORT.MAX_DIST,
                max_iou_distance=cfg.STRONGSORT.MAX_IOU_DISTANCE,
                max_age=cfg.STRONGSORT.MAX_AGE,
                n_init=cfg.STRONGSORT.N_INIT,
                nn_budget=cfg.STRONGSORT.NN_BUDGET,
                mc_lambda=cfg.STRONGSORT.MC_LAMBDA,
                ema_alpha=cfg.STRONGSORT.EMA_ALPHA,

            )
        )
    outputs = [None] * nr_sources

    # Run tracking
    model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz))  # warmup
    dt, seen = [0.0, 0.0, 0.0, 0.0], 0
    curr_frames, prev_frames = [None] * nr_sources, [None] * nr_sources
    for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255.0  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if opt.visualize else False
     
        pred = model(im, augment=opt.augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det)
        dt[2] += time_sync() - t3

        # Process detections
        
        for i, det in enumerate(pred):  # detections per image
            
            seen += 1
            if webcam:  # nr_sources >= 1
                p, im0, _ = path[i], im0s[i].copy(), dataset.count
                
                p = Path(p)  # to Path
                s += f'{i}: '
                txt_file_name = p.name
                save_path = str(save_dir / p.name)  # im.jpg, vid.mp4, ...
            else:
                p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
                p = Path(p)  # to Path
                # video 
                ### =============================================================================================
                
                
                ### ROI Rectangle  ( I will use cv2.selectROI later ) 
                # left_roi = [(381,331), (647,336), (647,497), (334,492)]
                # right_roi = [(648,335), (914,338), (958,498), (646,495)]

                # table_roi = [(381,331), (914,338), (958,498), (334,492)]
           
                # table_roi = [(0,0), (1280,0), (1280,720), (0,720)]
                table_roi = [(381,331), (1280,0), (1280,720), (0,720)]
                
                cv2.polylines(im0, [np.array(table_roi, np.int32)],True, (0,0,255),2 )
                # cv2.polylines(im0, [np.array(right_roi, np.int32)],True, (0,0,255),2 )
              
                ### =============================================================================================
                if source.endswith(VID_FORMATS):
                    txt_file_name = p.stem
                    save_path = str(save_dir / p.name)  # im.jpg, vid.mp4, ...
                # folder with imgs
                else:
                    txt_file_name = p.parent.name  # get folder name containing current img
                    save_path = str(save_dir / p.parent.name)  # im.jpg, vid.mp4, ...
            curr_frames[i] = im0

            txt_path = str(save_dir / 'tracks' / txt_file_name)  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            imc = im0.copy() if save_crop else im0  # for save_crop

            annotator = Annotator(im0, line_width=2, pil=not ascii)
            if cfg.STRONGSORT.ECC:  # camera motion compensation
                strongsort_list[i].tracker.camera_update(prev_frames[i], curr_frames[i])

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                xywhs = xyxy2xywh(det[:, 0:4])
                confs = det[:, 4]
                clss = det[:, 5]

                # pass detections to strongsort
                t4 = time_sync()
                outputs[i] = strongsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
                t5 = time_sync()
                dt[3] += t5 - t4

                # draw boxes for visualization
             
                if len(outputs[i]) > 0:
                    for j, (output, conf) in enumerate(zip(outputs[i], confs)):
### ========================================================================================================================================================
###  Results ROI
### ========================================================================================================================================================
                        
                        # if output[5] == 0.0:

                        #     bboxes = output[0:4]
                        #     id = output[4]
                        #     cls = output[5]
                        #     center = int((((output[0]) + (output[2]))/2) , (((output[1]) + (output[3]))/2))
                        #     print("center",center)
                        
                        """  
                        - create rectangle left/right
                        - display ball cordinates
                        - intersect ball & rectangle left/right 
                        """

                        
                        ## ball cord..
                        if output[5] == 0.0:
                            # print("bbox----------", output[0:4])
                            print("class----------", output[5])
                            # print("id -------------", output[4])
        
                            print("=============================================")
                            # display ball rectangle
                            ## cv2.rectangle(im0,(int(output[0]),int(output[1])),(int(output[2]),int(output[3])),(0,255,0),2 )
                            ball_box = output[0:4]
                            list_ball_cord.append(ball_box)
                            bbox_left = output[0]
                            bbox_top = output[1]
                            bbox_w = output[2] - output[0]
                            bbox_h = output[3] - output[1]
                            # print("bbox_left--------", bbox_left)
                            # print("bbox_top--------", bbox_top)
                            # print("bbox_w--------", bbox_w)
                            # print("bbox_h--------", bbox_h)

                            ## ball center point
                            ball_cx = int(bbox_left + bbox_w /2)
                            ball_cy = int(bbox_top + bbox_h /2)
                            # cv2.circle(im0, (ball_cx,ball_cy),5, (0,0,255),-1)



                            # # ball detect only on table >> return three output +1-inside the table -1-outside the table 0-on the boundry 
                            ball_on_table_res = cv2.pointPolygonTest(np.array(table_roi,np.int32), (int(ball_cx),int(ball_cy)), False)
                            
                            if ball_on_table_res >= 0:
                                cv2.circle(im0, (ball_cx,ball_cy),20, (0,0,0),-1)




### ========================================================================================================================================================
         
                        bboxes = output[0:4]
                        id = output[4]
                        cls = output[5]
                        # print("bboxes--------", bboxes)
                        # print("cls-----------", cls)
                   
                        if save_txt:
                            # to MOT format
                            bbox_left = output[0]
                            bbox_top = output[1]
                            bbox_w = output[2] - output[0]
                            bbox_h = output[3] - output[1]
                            # Write MOT compliant results to file
                            
               
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left,  # MOT format
                                                               bbox_top, bbox_w, bbox_h, -1, -1, -1, i))

                        if save_vid or save_crop or show_vid:  # Add bbox to image
                            c = int(cls)  # integer class
                            id = int(id)  # integer id
                            label = None if hide_labels else (f'{id} {names[c]}' if hide_conf else \
                                (f'{id} {conf:.2f}' if hide_class else f'{id} {names[c]} {conf:.2f}'))
                            annotator.box_label(bboxes, label, color=colors(c, True))
                            #####################print("label---------", label)
                            if save_crop:
                                txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
                                save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)
                fps_StrongSORT = 1 / (t5-t4)
                fps_yolo = 1/ (t3-t2)
                LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), StrongSORT:({t5 - t4:.3f}s), ')
                print("fps_StrongSORT-----", fps_StrongSORT)
                print("fps_yolo-----", fps_yolo)

            else:
                strongsort_list[i].increment_ages()
                LOGGER.info('No detections')

            # Stream results
            im0 = annotator.result()
            if show_vid:
                # im0 = cv2.resize(im0, (640,640))
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_vid:
                if vid_path[i] != save_path:  # new video
                    vid_path[i] = save_path
                    if isinstance(vid_writer[i], cv2.VideoWriter):
                        vid_writer[i].release()  # release previous video writer
                    if vid_cap:  # video
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    else:  # stream
                        fps, w, h = 30, im0.shape[1], im0.shape[0]
                    save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                    vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                vid_writer[i].write(im0)

            prev_frames[i] = curr_frames[i]

    print("fffffffffffffffffffffffffffffffff----------------------------------------",list_ball_cord)
    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms strong sort update per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_vid:
        s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(yolo_weights)  # update model (to fix SourceChangeWarning)
    

def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--yolo-weights', nargs='+', type=str, default='v5best_bp.pt', help='model.pt path(s)')
    parser.add_argument('--strong-sort-weights', type=str, default=WEIGHTS / 'osnet_x0_25_msmt17.pt')
    parser.add_argument('--config-strongsort', type=str, default='strong_sort/configs/strong_sort.yaml')
    parser.add_argument('--source', type=str, default='0', help='file/dir/URL/glob, 0 for webcam')  
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    # class 0 is person, 1 is bycicle, 2 is car... 79 is oven
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--hide-class', default=False, action='store_true', help='hide IDs')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
    run(**vars(opt))



if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

在这里输入图像描述

EN

Stack Overflow用户

发布于 2022-09-14 11:17:25

我也使用同样的模式,也面临着同样的问题。

尝试注释更多的图像,并将图像大小增加到1024。还要确保在yolov5中使用yolov5+deepsort中的最佳权重。

票数 0
EN
查看全部 2 条回答
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/72879863

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档