我在linux miniconda3 aarch64体系结构 (Linux version 4.9.277-122 (root@builder_n2) (gcc version 7.5.0 (Ubuntu/Linaro 7.5.0-6ubuntu2) ) #1 SMP PREEMPT )
中使用miniconda3安装程序在linux中创建虚拟环境。我安装以下软件包时没有任何问题。
Package Version
---------------------------- ------------
absl-py 1.2.0
appdirs 1.4.4
astunparse 1.6.3
attrs 22.1.0
audioread 2.1.9
cachetools 5.2.0
certifi 2022.6.15
cffi 1.15.1
charset-normalizer 2.1.0
cycler 0.11.0
decorator 5.1.1
distlib 0.3.5
filelock 3.8.0
flatbuffers 2.0
fonttools 4.34.4
fpdf 1.7.2
gast 0.4.0
google-auth 2.10.0
google-auth-oauthlib 0.4.6
google-pasta 0.2.0
grpcio 1.47.0
h5py 3.7.0
idna 3.3
joblib 1.1.0
jsonschema 4.9.1
keras 2.9.0
Keras-Preprocessing 1.1.2
kiwisolver 1.4.4
kneed 0.8.1
libclang 14.0.6
librosa 0.9.2
llvmlite 0.39.0
logger 1.4
Markdown 3.4.1
MarkupSafe 2.1.1
matplotlib 3.5.3
numba 0.56.0
numpy 1.22.4
oauthlib 3.2.0
opt-einsum 3.3.0
packaging 21.3
pandas 1.4.3
pickle5 0.0.11
Pillow 9.2.0
pip 22.2.2
platformdirs 2.5.2
pooch 1.6.0
protobuf 3.19.4
pyasn1 0.4.8
pyasn1-modules 0.2.8
pycparser 2.21
pyparsing 3.0.9
pyrsistent 0.18.1
python-dateutil 2.8.2
python-Levenshtein 0.12.2
pytz 2022.1
rdp 0.8
requests 2.28.1
requests-oauthlib 1.3.1
resampy 0.4.0
rsa 4.9
scikit-learn 1.1.2
scipy 1.9.0
seaborn 0.11.2
setuptools 63.4.3
six 1.16.0
SoundFile 0.10.3.post1
tensorboard 2.9.1
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1
tensorflow 2.10.0rc0
tensorflow-cpu-aws 2.10.0rc0
tensorflow-estimator 2.9.0
tensorflow-io-gcs-filesystem 0.26.0
termcolor 1.1.0
threadpoolctl 3.1.0
typing_extensions 4.3.0
urllib3 1.26.11
virtualenv 20.16.3
watchdog 2.1.9
Werkzeug 2.2.2
wheel 0.37.1
wrapt 1.14.1
但是,当我在python中导入所有这些包时,tensorflow和keras会出现以下错误。我可以知道如何解决这个问题吗?
RuntimeError: module compiled against API version 0x10 but this version of numpy is 0xf
RuntimeError: module compiled against API version 0x10 but this version of numpy is 0xf
ImportError: numpy.core._multiarray_umath failed to import
ImportError: numpy.core.umath failed to import
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/keras/__init__.py", line 21, in <module>
from tensorflow.python import tf2
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/__init__.py", line 37, in <module>
from tensorflow.python.tools import module_util as _module_util
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/__init__.py", line 42, in <module>
from tensorflow.python import data
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/__init__.py", line 21, in <module>
from tensorflow.python.data import experimental
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/__init__.py", line 96, in <module>
from tensorflow.python.data.experimental import service
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/service/__init__.py", line 419, in <module>
from tensorflow.python.data.experimental.ops.data_service_ops import distribute
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/ops/data_service_ops.py", line 24, in <module>
from tensorflow.python.data.experimental.ops import compression_ops
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/ops/compression_ops.py", line 16, in <module>
from tensorflow.python.data.util import structure
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/util/structure.py", line 23, in <module>
from tensorflow.python.data.util import nest
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/util/nest.py", line 36, in <module>
from tensorflow.python.framework import sparse_tensor as _sparse_tensor
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/framework/sparse_tensor.py", line 24, in <module>
from tensorflow.python.framework import constant_op
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/framework/constant_op.py", line 25, in <module>
from tensorflow.python.eager import execute
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/eager/execute.py", line 23, in <module>
from tensorflow.python.framework import dtypes
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/framework/dtypes.py", line 34, in <module>
_np_bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()
TypeError: Unable to convert function return value to a Python type! The signature was
() -> handle
>>> import tensorflow
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/__init__.py", line 37, in <module>
from tensorflow.python.tools import module_util as _module_util
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/__init__.py", line 42, in <module>
from tensorflow.python import data
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/__init__.py", line 21, in <module>
from tensorflow.python.data import experimental
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/__init__.py", line 96, in <module>
from tensorflow.python.data.experimental import service
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/service/__init__.py", line 419, in <module>
from tensorflow.python.data.experimental.ops.data_service_ops import distribute
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/ops/data_service_ops.py", line 24, in <module>
from tensorflow.python.data.experimental.ops import compression_ops
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/experimental/ops/compression_ops.py", line 16, in <module>
from tensorflow.python.data.util import structure
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/util/structure.py", line 23, in <module>
from tensorflow.python.data.util import nest
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/data/util/nest.py", line 36, in <module>
from tensorflow.python.framework import sparse_tensor as _sparse_tensor
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/framework/sparse_tensor.py", line 24, in <module>
from tensorflow.python.framework import constant_op
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/framework/constant_op.py", line 25, in <module>
from tensorflow.python.eager import execute
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/eager/execute.py", line 23, in <module>
from tensorflow.python.framework import dtypes
File "/home/su/miniconda3/envs/penvreq/lib/python3.10/site-packages/tensorflow/python/framework/dtypes.py", line 34, in <module>
_np_bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()
TypeError: Unable to convert function return value to a Python type! The signature was
() -> handle
我还搜索了堆栈溢出的其他问题,并找到了RuntimeError: module compiled against API version a but this version of numpy is 9,但在这里,解决方案是更新numpy。我的情况是,我不能将numpy更新为最新版本(1.23.1),因为librosa中numpy的依赖项小于1.23.0。我可以知道如何解决tensorflow和keras中的这个错误吗?它与与tensorflow版本不兼容的numpy版本有关吗?但是当我使用pip在minicda3的虚拟环境中安装tensorflow时,它需要numpy>=1.20版本,我安装了numpy 1.22.4。
此外,我不能用conda install命令安装tensorflow,因为每当我用conda安装tensorflow时,它都说
PackagesNotFoundError: The following packages are not available from current channels:
- tensorflow
Current channels:
- https://conda.anaconda.org/conda-forge/linux-aarch64
- https://conda.anaconda.org/conda-forge/noarch
- https://conda.anaconda.org/default/linux-aarch64
- https://conda.anaconda.org/default/noarch
To search for alternate channels that may provide the conda package you're
looking for, navigate to
https://anaconda.org
and use the search bar at the top of the page.
因此,我使用pip安装所有这些软件包。而且,当我搜索conda search tensorflow
时,它说
Loading channels: done
No match found for: tensorflow.
我还想知道,我应该定义哪个通道才能使用conda进行安装?现在,我将conda-伪造和默认定义为一个通道。
此外,当我在Linux aarch64中的miniconda底部搜索tensorflow时,conda search tensorflow
我得到了以下错误
/home/su/miniconda3/bin/conda search tensorflow`
environment variables:
CIO_TEST=<not set>
CONDA_DEFAULT_ENV=base
CONDA_EXE=/home/su/miniconda3/bin/conda
CONDA_PREFIX=/home/su/miniconda3
CONDA_PROMPT_MODIFIER=(base)
CONDA_PYTHON_EXE=/home/su/miniconda3/bin/python
CONDA_ROOT=/home/su/miniconda3
CONDA_SHLVL=1
CURL_CA_BUNDLE=<not set>
PATH=/home/su/miniconda3/bin:/home/su/.local/bin:/home/su/minic
onda3/bin:/home/su/miniconda3/condabin:/usr/local/sbin:/usr/local/
bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bi
n
REQUESTS_CA_BUNDLE=<not set>
SSL_CERT_FILE=<not set>
UBUNTU_MENUPROXY=<set>
http_proxy=<set>
https_proxy=<set>
no_proxy=<set>
active environment : base
active env location : /home/su/miniconda3
shell level : 1
user config file : /home/su/.condarc
populated config files : /home/su/.condarc
conda version : 4.9.2
conda-build version : not installed
python version : 3.9.1.final.0
virtual packages : __glibc=2.31=0
__unix=0=0
__archspec=1=aarch64
base environment : /home/su/miniconda3 (writable)
channel URLs : https://conda.anaconda.org/default/linux-aarch64
https://conda.anaconda.org/default/noarch
https://conda.anaconda.org/conda-forge/linux-aarch64
https://conda.anaconda.org/conda-forge/noarch
package cache : /home/su/miniconda3/pkgs
/home/su/.conda/pkgs
envs directories : /home/su/miniconda3/envs
/home/su/.conda/envs
platform : linux-aarch64
user-agent : conda/4.9.2 requests/2.25.1 CPython/3.9.1 Linux/4.9.277-122 ubuntu/20.04.4 glibc/2.31
UID:GID : 1000:1000
netrc file : None
offline mode : False
An unexpected error has occurred. Conda has prepared the above report.
If submitted, this report will be used by core maintainers to improve
future releases of conda.
Would you like conda to send this report to the core maintainers?
不知道为什么迷你会给这个问题。它与.condarc文件有关吗?
发布于 2022-08-11 19:58:43
不确定这是否能解决你所有的其他问题。但是,如果您想通过conda
安装Tensorflow,我喜欢的是在创建环境时安装它,如下所示:
conda create -n my_env tensorflow-gpu=my_version
或
conda create -n my_env tensorflow
使用最新版本的Tensorflow为CPU创建环境。
在此之后,您可以安装所有其他软件包,并查看问题是否得到解决。希望这能有所帮助。
更新
尝试在conda-forge
通道中搜索Tensorflow,如下所示:
conda search -c conda-forge tensorflow
https://stackoverflow.com/questions/73324651
复制相似问题