我试图用以下代码将火把-闪电模型(ckpt)更改为onnx:.
test_comment = 'I am still waiting on my card?'
start= time.time()
encoding = tokenizer.encode_plus(
test_comment,
add_special_tokens=True,
max_length=512,
return_token_type_ids=False,
padding="max_length",
return_attention_mask=True,
return_tensors='pt',
)
input_ids = encoding["input_ids"]
attention_mask = encoding["attention_mask"]
trained_model.to_onnx( "model_lightnining_export.onnx",
(input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0)) , export_params=True ,
input_names=['images'],
output_names=['output'])
并获得以下错误(尽管我将attention_mask作为示例输入):
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-240-853786b1ab45> in <module>
22 (input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0)) , export_params=True ,
23 input_names=['images'],
---> 24 output_names=['output'])
25
2 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 Module: self
726 """
--> 727 return self._apply(lambda t: t.xpu(device))
728
729 def cpu(self: T) -> T:
TypeError: forward() missing 1 required positional argument: 'attention_mask'
该模型的代码:
class Tagger(pl.LightningModule):
def __init__(self, n_classes: int, n_training_steps=None, n_warmup_steps=None):
super().__init__()
self.bert = BertModel.from_pretrained(BERT_MODEL_NAME, return_dict=True)
self.classifier = nn.Linear(self.bert.config.hidden_size, n_classes)
self.n_training_steps = n_training_steps
self.n_warmup_steps = n_warmup_steps
self.criterion = nn.CrossEntropyLoss(reduction="mean")
self.n_classes = n_classes
self.activation = nn.Softmax(dim=1)
def forward(self, input_ids, attention_mask, labels=None):
output = self.bert(input_ids, attention_mask=attention_mask)
output = self.classifier(output.pooler_output)
output = torch.relu(output)
loss = 0
if labels is not None:
loss = self.criterion(output, labels)
return loss, output
def training_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels = batch["labels"]
loss, outputs = self(input_ids, attention_mask, labels)
self.log("train_loss", loss, prog_bar=True, logger=True)
return {"loss": loss, "predictions": outputs, "labels": labels}
def validation_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels = batch["labels"]
loss, outputs = self(input_ids, attention_mask, labels)
self.log("val_loss", loss, prog_bar=True, logger=True)
return loss
def test_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels = batch["labels"]
loss, outputs = self(input_ids, attention_mask, labels)
self.log("test_loss", loss, prog_bar=True, logger=True)
return loss
def training_epoch_end(self, outputs):
labels = []
predictions = []
for output in outputs:
for out_labels in output["labels"].detach().cpu():
labels.append(out_labels)
for out_predictions in output["predictions"].detach().cpu():
predictions.append(out_predictions)
labels = torch.stack(labels).int()
predictions = torch.stack(predictions)
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=2e-5)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=self.n_warmup_steps,
num_training_steps=self.n_training_steps
)
return dict(
optimizer=optimizer,
lr_scheduler=dict(
scheduler=scheduler,
interval='step'
)
)
进一步优化生产中的Bert模型是值得欢迎的。
发布于 2022-08-24 12:59:04
您正在告诉onnx出口商,您的模型有两个输入:
(input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0))
但是,您只有一个输入名称:
input_names=['images']
您应该写以下内容:
trained_model.to_onnx( "model_lightnining_export.onnx",
(input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0)) , export_params=True ,
input_names=['input_ids', 'attention_mask'],
output_names=['output'])
发布于 2022-08-24 13:05:48
假设您的trained_model
是类Tagger
的一个元素,我相信您将更容易使用attention_mask
作为标记类的属性。所以在Tagger.__init__()
中添加一个参数attention_mask
和一行self.attention_mask = attention_mask
。然后向前,从参数中删除它,并且只使用output = self.bert(input_ids, attention_mask=self.attention_mask)
。最后,在转换代码中,可以使用额外的参数trained_model初始化attention_mask = encoding["attention_mask"]
。
这可能更好,因为大多数到脚本/onnx的转换器只接受一个输入:输入张量,这里您尝试使用张量和注意掩码。
https://stackoverflow.com/questions/73459330
复制相似问题