为了简洁起见,我简化了这个场景。
初步数据:
| EngineerId | FirstName | LastName | BirthdateOn | CupsOfCoffee | HoursOfSleep |
| ---------- | --------- | -------- | ----------- | ------------ | ------------ |
| 1 | John | Doe | 1990-01-01 | 5 | 8 |
| 2 | James | Bond | 1990-01-01 | 1 | 6 |
| 3 | Leeroy | Jenkins | 2000-06-20 | 16 | 10 |
| 4 | Jane | Doe | 2000-06-20 | 8 | 2 |
| 5 | Lorem | Ipsum | 2010-12-25 | 4 | 5 |
db.engineers.insertMany([
{ FirstName: 'John', LastName: 'Doe', BirthdateOn: ISODate('1990-01-01'), CupsOfCoffee: 5, HoursOfSleep: 8 },
{ FirstName: 'James', LastName: 'Bond', BirthdateOn: ISODate('1990-01-01'), CupsOfCoffee: 1, HoursOfSleep: 6 },
{ FirstName: 'Leeroy', LastName: 'Jenkins', BirthdateOn: ISODate('2000-06-20'), CupsOfCoffee: 16, HoursOfSleep: 10 },
{ FirstName: 'Jane', LastName: 'Doe', BirthdateOn: ISODate('2000-06-20'), CupsOfCoffee: 8, HoursOfSleep: 2 },
{ FirstName: 'Lorem', LastName: 'Ipsum', BirthdateOn: ISODate('2010-12-25'), CupsOfCoffee: 4, HoursOfSleep: 5 }
])
我们希望看到:
SQL查询是:
SELECT
FirstName,
LastName,
BirthdateOn,
CupsOfCoffee,
ROW_NUMBER() OVER (PARTITION BY BirthdateOn ORDER BY CupsOfCoffee DESC) AS 'Row Number',
COUNT(EngineerId) OVER (PARTITION BY BirthdateOn) AS TotalEngineers,
SUM(CupsOfCoffee) OVER (PARTITION BY BirthdateOn) AS TotalCupsOfCoffee,
AVG(HoursOfSleep) OVER (PARTITION BY BirthdateOn) AS AvgHoursOfSleep
FROM Engineers
其结果如下:
| FirstName | LastName | BirthdateOn | Row Number | CupsOfCoffee | TotalEngineers | TotalCupsOfCoffee | AvgHoursOfSleep |
| --------- | -------- | ----------- | ---------- | ------------ | -------------- | ----------------- | --------------- |
| John | Doe | 1990-01-01 | 1 | 5 | 2 | 6 | 7 |
| James | Bond | 1990-01-01 | 2 | 1 | 2 | 6 | 7 |
| Leeroy | Jenkins | 2000-06-20 | 1 | 16 | 2 | 24 | 6 |
| Jane | Doe | 2000-06-20 | 2 | 8 | 2 | 24 | 6 |
| Lorem | Ipsum | 2010-12-25 | 1 | 4 | 1 | 4 | 5 |
我已经阅读了很多关于MongoDB聚合管道的文章,但是还没有找到一个很好的解决方案。我知道这不是SQL,解决方案可能不会以这种精确的格式产生结果(尽管这将是惊人的)。我考虑过的一件事是将聚合和集合的结果结合起来,但这不是不可能的,就是我一直在用错误的条件进行搜索。$merge
看起来很有希望,但是它会修改原始的集合,这是不好的。
我已经得到了以下内容,但结果不包括“行号”、特定工程师使用的杯子或工程师的ID和姓名。
db.engineers.aggregate([
{
$group: {
_id: '$BirthdateOn',
TotalEngineers: {
$count: { }
},
TotalCupsOfCoffee: {
$sum: '$CupsOfCoffee'
},
AvgHoursOfSleep: {
$avg: '$HoursOfSleep'
}
}
}
])
我的想法与组合是find
所有的工程师,然后运行聚合,并“加入”它的工程师通过BirthdateOn
。
谢谢你的帮助!非常感谢。
发布于 2022-09-22 19:32:23
你开了个好头。若要获取可以与$push运算符一起使用的输入数据,请执行以下操作。
是这样的:
db.engineers.aggregate([
{
$group: {
_id: "$BirthdateOn",
TotalEngineers: { $count: {} },
TotalCupsOfCoffee: { $sum: "$CupsOfCoffee" },
AvgHoursOfSleep: { $avg: "$HoursOfSleep" },
data: { $push: "$$ROOT" }
}
}
])
关于适当的输出尝试:
db.engineers.aggregate([
{
$group: {
_id: "$BirthdateOn",
TotalEngineers: { $count: {} },
TotalCupsOfCoffee: { $sum: "$CupsOfCoffee" },
AvgHoursOfSleep: { $avg: "$HoursOfSleep" },
data: { $push: "$$ROOT" }
}
},
{ $unwind: "$data" },
{ $replaceWith: { $mergeObjects: ["$$ROOT", "$data"] } }
])
通常情况下,运行$group
和后来的$unwind
是没有意义的,后者基本上恢复了以前的操作。
MongoDB版本5.0引入了$setWindowFields阶段,它非常类似于SQL函数:
我想应该是这个:
db.engineers.aggregate([
{
$setWindowFields: {
partitionBy: "$BirthdateOn",
sortBy: { CupsOfCoffee: 1 },
output: {
TotalEngineers: { $count: {} },
TotalCupsOfCoffee: { $sum: "$CupsOfCoffee" },
AvgHoursOfSleep: { $avg: "$HoursOfSleep" },
"Row Number": { $documentNumber: {} }
}
}
}
])
https://stackoverflow.com/questions/73819560
复制相似问题