首页
学习
活动
专区
圈层
工具
发布
社区首页 >问答首页 >Tensorflow / Keras ValueError:层“模型”的输入0与层不兼容:期望shape=(None,224,224,3),找到shape=(32,224,3)

Tensorflow / Keras ValueError:层“模型”的输入0与层不兼容:期望shape=(None,224,224,3),找到shape=(32,224,3)
EN

Stack Overflow用户
提问于 2022-09-29 16:37:35
回答 1查看 159关注 0票数 0

我检查了所有其他类似的错误,但没有人工作。我正在从keras中的resnet50模型进行转移学习。我就是这样创建模型的:

代码语言:javascript
复制
    inputs = keras.Input(shape=input_shape, dtype=tf.float32)

    augmentation_layer = Sequential([
        layers.RandomFlip(**data_aug_layer["random_flip"]),
        layers.RandomRotation(**data_aug_layer["random_rotation"]),
        layers.RandomZoom(**data_aug_layer["random_zoom"]),
    ])

    x = augmentation_layer(inputs)
    x = preprocess_input(x)
    
    scale_layer = layers.Rescaling(scale=1./255)
    x = scale_layer(x)
   
    base_model=ResNet50(
        include_top=False,
        weights='imagenet',
        pooling='avg',
        input_shape=input_shape
        )
    x = base_model(x, training=False)
    x = layers.Dropout(dropout_rate)(x)
    outputs=layers.Dense(classes, activation='softmax')(x)
    model = Model(inputs, outputs)

训练结束后,我保存了权重并加载它们,然后再进行图像预处理:

代码语言:javascript
复制
def norma(arr):
    normalization_layer = layers.Rescaling(1./255)
    return normalization_layer(arr)

ims=keras.utils.load_img(test_files[0], target_size=(224, 224))
im_arr=keras.utils.img_to_array(ims)
im_arr_preproc=tf.keras.applications.resnet.preprocess_input(im_arr)
im_arr_scaled = norma(im_arr_preproc)

WEIGHTS="/home/app/src/experiments/exp_007/model.01-5.2777.h5"
wg_model = resnet_50.create_model(weights = WEIGHTS)

wg_model.predict(im_arr_scaled)

预测总是失败的"ValueError:输入0层“"model_2”是不兼容的层:期望shape=(无,224,224,3),找到shape=(32,224,3)。

但我正在检查图像的每一步的形状和大小,永远不要转向(32,224,3)。不知道错误可能在哪里,任何想法都会很感激。

这是错误输出:

代码语言:javascript
复制
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In [61], line 1
----> 1 cnn_model.predict(im_arr_scaled)

File ~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67, in filter_traceback.<locals>.error_handler(*args, **kwargs)
     65 except Exception as e:  # pylint: disable=broad-except
     66   filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67   raise e.with_traceback(filtered_tb) from None
     68 finally:
     69   del filtered_tb

File ~/.local/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py:1147, in func_graph_from_py_func.<locals>.autograph_handler(*args, **kwargs)
   1145 except Exception as e:  # pylint:disable=broad-except
   1146   if hasattr(e, "ag_error_metadata"):
-> 1147     raise e.ag_error_metadata.to_exception(e)
   1148   else:
   1149     raise

ValueError: in user code:

    File "/home/app/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1801, in predict_function  *
        return step_function(self, iterator)
    File "/home/app/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1790, in step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
...
    File "/home/app/.local/lib/python3.8/site-packages/keras/engine/input_spec.py", line 264, in assert_input_compatibility
        raise ValueError(f'Input {input_index} of layer "{layer_name}" is '

    ValueError: Input 0 of layer "model_2" is incompatible with the layer: expected shape=(None, 224, 224, 3), found shape=(32, 224, 3)
EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2022-09-29 16:38:52

您可能缺少批处理维度。尝试:

代码语言:javascript
复制
wg_model.predict(im_arr_scaled[None, ...])
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/73898958

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档