情况
自2022年9月19日以来,Apache风流2.4.0
中重组单个任务。
目标
我的目标是使用从本地requirements.txt.
。
我想请求
。
系统
works.
的
知识差距
https://github.com/apache/airflow/discussions/26783#discussioncomment-3766422
我不想要这个
的结果。
终端命令
docker build -t my-image-apache/airflow:2.4.1 .之后,我将运行以下命令,但第一步失败
docker-compose up我的档案
docker-compose.yml
https://airflow.apache.org/docs/apache-airflow/2.4.1/docker-compose.yaml
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow.
# Default: apache/airflow:2.4.1
# AIRFLOW_UID - User ID in Airflow containers
# Default: 50000
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested).
# Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested).
# Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
# Default: ''
#
# Feel free to modify this file to suit your needs.
---
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-my-image-apache/airflow:2.4.1}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
# For backward compatibility, with Airflow <2.3
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ./dags:/opt/airflow/dags
- ./logs:/opt/airflow/logs
- ./plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 5s
retries: 5
restart: always
redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 30s
retries: 50
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- 8080:8080
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 10s
timeout: 10s
retries: 5
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(AIRFLOW__LOGGING__LOGGING_LEVEL=INFO && gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- .:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- 5555:5555
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
postgres-db-volume:Dockrfile (我所处理的所有混乱)
FROM apache/airflow:2.4.1-python3.8
# https://pythonspeed.com/articles/activate-virtualenv-dockerfile/
ENV VIRTUAL_ENV=/opt/venv
RUN python3 -m venv $VIRTUAL_ENV
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# Install dependencies:
COPY requirements.txt .
RUN pip install -r requirements.txt
# Run the application:
# COPY myapp.py .
# CMD ["python", "myapp.py"]
# RUN python3 -m venv /path/to/new/virtual/environment_1 && \
# /path/to/new/virtual/environment_1/bin/python \
# -m pip install requirements.txt
# RUN python3 -m venv /path/to/new/virtual/environment_2 && \
# /path/to/new/virtual/environment_2/bin/python \
# -m pip install my_requirements_2.txt偏误
我在Dockerfile前就有过python在码头上。
FROM python:3.9-slim-bullseye
RUN python3 -m venv /opt/venv
# Install dependencies:
COPY requirements.txt .
RUN . /opt/venv/bin/activate && pip install -r requirements.txt
# Run the application:
COPY myapp.py .
CMD . /opt/venv/bin/activate && exec python myapp.pyDockerfile:但是有了气流,它就不能工作了:
FROM apache/airflow:2.4.1-python3.8
COPY requirements.txt .
RUN python3 -m venv /opt/airflow/virtual_1 && \
/opt/airflow/virtual_1/bin/python \
-m pip install requirements.txt错误
=> ERROR [stage-1 2/2] RUN python3 -m venv /opt/airflow/virtual_1 && /opt/airflow/virtual_1/bin/python -m pip install requirements.txt 我试过的另一件事
1.)
FROM apache/airflow:2.4.1-python3.8
RUN python3 -m venv /opt/airflow
# Install dependencies:
COPY requirements.txt .
RUN /opt/airflow/venv/bin/pip install -r requirements.txt命令- docker build -t my-image-apache/airflow:2.4.1 .
误差=> ERROR [4/4] RUN /opt/airflow/venv/bin/pip install -r requirements.txt
2.)
FROM apache/airflow:2.4.1-python3.8
COPY requirements.txt .
RUN python3 -m venv && \
/venv/bin/python install -m pip requirements.txt误差=> ERROR [3/3] RUN python3 -m venv && /venv/bin/python install -m pip requirements.txt
发布于 2022-10-06 09:09:05
更简单的气流替代方案
我宁愿不推荐气流,如果你对此不太投入,有很容易使用的替代方案:
https://github.com/mage-ai/mage-ai
如何用气流做这件事
1.)原始Dockerfile
只需文本,即可更改,这将成为您可以拉出的原始图像- https://hub.docker.com/r/apache/airflow/dockerfile。
2.)原始图像
从原始Dockerfile - https://hub.docker.com/layers/apache/airflow/latest/images/sha256-5015db92023bebb1e8518767bfa2e465b2f52270aca6a9cdef85d5d3e216d015?context=explore创建的可编译的、可更改的
3.)我的requirements.txt
requirements.txt -不一定要安装气流。
pandas==1.3.0
numpy==1.20.33.)我的文件
这将提取原始图像并对其进行扩展。
FROM apache/airflow:2.4.1-python3.8
# Compulsory to switch parameter
ENV PIP_USER=false
#python venv setup
RUN python3 -m venv /opt/airflow/venv1
# Install dependencies:
COPY requirements.txt .
# --user <--- WRONG, this is what ENV PIP_USER=false turns off
#RUN /opt/airflow/venv1/bin/pip install --user -r requirements.txt <---this is all wrong
RUN /opt/airflow/venv1/bin/pip install -r requirements.txt
RUN /opt/airflow/venv1/bin/pip install 'apache-airflow==2.4.1' --constraint "https://raw.githubusercontent.com/apache/airflow/constraints-2.4.1/constraints-3.8.txt"
ENV PIP_USER=true4.)终端指挥
(在同一个库中,您的文件必须称为"Dockerfile")
docker build -t my-image-apache/airflow:2.4.1 .
5.)DAG文件
如果您已经创建了与正式向导says
。
mkdir -p ./dags ./logs ./plugins
echo -e "AIRFLOW_UID=$(id -u)" > .env之前设置新的用户名和密码。
6.)ex测试DAG
。
"""
Example DAG demonstrating the usage of the TaskFlow API to execute Python functions natively and within a
virtual environment.
"""
from __future__ import annotations
import logging
import os
import shutil
import sys
import tempfile
import time
from pprint import pprint
import pendulum
from airflow import DAG
from airflow.decorators import task
log = logging.getLogger(__name__)
PYTHON = sys.executable
BASE_DIR = tempfile.gettempdir()
with DAG(
dag_id='test_external_python_venv_dag2',
schedule=None,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
catchup=False,
tags=['my_test'],
) as dag:
#@task.external_python(task_id="test_external_python_venv_task", python=os.fspath(sys.executable))
# /opt/airflow/venv1/bin/python3 <-- have to point to an executable python file in thy python virtual environemnt
@task.external_python(task_id="test_external_python_venv_task", python='/opt/airflow/venv1/bin/python3')
def test_external_python_venv_def():
"""
Example function that will be performed in a virtual environment.
Importing at the module level ensures that it will not attempt to import the
library before it is installed.
"""
import sys
from time import sleep
########## MY CODE ##########
import numpy as np
import pandas as pd
d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
print(df)
a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(a)
#a= 10
return a
########## XXXXX MY CODE XXXXX ##########
print(f"Running task via {sys.executable}")
print("Sleeping")
for _ in range(4):
print('Please wait...', flush=True)
sleep(1)
print('Finished')
external_python_task = test_external_python_venv_def()7.)docker-compose.yml
正式的原始坞-Compose.yml文件https://airflow.apache.org/docs/apache-airflow/2.4.1/docker-compose.yaml修改此部分:
## Feel free to modify this file to suit your needs.
---
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-my-image-apache/airflow:2.4.1} #<- this is because of my terminal command above section
# image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.4.1} <--- THIS WAS THE ORIGINAL
environment:
#.... many staff here originaly in this environment section.....
AIRFLOW__CORE__ENABLE_XCOM_PICKLING: 'true' # <--ADD THIS. This is internal communication for airflow
volumes:
- ./dags:/opt/airflow/dags
- ./logs:/opt/airflow/logs9.)从图像到容器
(在同一个库中,您的文件必须被称为“docker-come.yml”)
docker-compose up
或开始与终端分离
docker-compose up -d
10.)日志
如果您想在mac和Windows上查看容器的日志,Docker应用程序GUI允许在Linux上这样做,您可以使用以下命令
docker logs -f CONTATINER_ACTUAL_ID
您可以通过按下关闭容器的方式退出它
CTRL + c
11.)关闭集装箱:
如果您在日志中,则按docker-compose down
CTRL + C!!!停止和删除容器,删除带有数据库数据的卷并下载图像,运行。
docker-compose down --volumes --rmi all
https://stackoverflow.com/questions/73945900
复制相似问题