我做了一些模型,SHAP在随机森林中正常工作,但是这个模型我已经定义了。
df_new = SVC(kernel="poly", random_state=1, C=3.0)
df_new.fit(x_train, y_train)
previsoes = df_new.predict(x_test)
previsoes
explainer = shap.KernelExplainer(df_new)
shap_values = explainer.shap_values(x)
shap.summary_plot(shap_values, x)
TypeError Traceback (most recent call last)
<ipython-input-84-58995882eb99> in <module>
1 #Explanando as influências das variáveis na predição (SVM) 2 explainer =
shap.KernelExplainer(previsoes)
3 shap_values = explainer.shap_values(x)
4 shap.summary_plot(shap_values, x)
TypeError: __init__() missing 1 required positional argument: 'data'
发布于 2022-10-17 16:30:51
shap.KernelExplainer有两个必需的参数:模型和数据。因此,您需要在您的方法中包含data,并且还需要传递预限,而不是模型(df_new),例如:
explainer = shap.KernelExplainer(previsoes, x_train)
https://stackoverflow.com/questions/74068451
复制相似问题