首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >修正CNN过度拟合

修正CNN过度拟合
EN

Stack Overflow用户
提问于 2021-11-21 12:50:57
回答 1查看 114关注 0票数 2

我正在使用CNN和MobileNet模型来建立一个基于图像数据集将手语分类为字母的模型。因此,它是一个多类分类模型.然而,经过编译和拟合后的模型。准确率高(98%)。但是当我想要想象混乱矩阵时,我真的错过了矩阵。这是否意味着模型太合适了?我怎样才能修正它得到一个更好的矩阵呢?

代码语言:javascript
运行
复制
train_path = 'train'
test_path = 'test'

train_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
    directory=train_path, target_size=(64,64), batch_size=10)


test_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
    directory=test_path, target_size=(64,64), batch_size=10)


mobile = tf.keras.applications.mobilenet.MobileNet()

x = mobile.layers[-6].output
output = Dense(units=32, activation='softmax')(x)
model = Model(inputs=mobile.input, outputs=output)
for layer in model.layers[:-23]:
    layer.trainable = False
model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])

class myCallback(tf.keras.callbacks.Callback):
    def on_epoch_end(self,epoch,logs={}):
        if(logs.get('val_accuracy')>=0.98):
            print('\n Reached to good accuracy')
            self.model.stop_training=True
callbacks=myCallback()


model.fit(train_batches,
            steps_per_epoch=len(train_batches), 
            validation_data=test_batches,
            validation_steps=len(test_batches),
            epochs=10,callbacks=[callbacks])




Epoch 1/10
4498/4498 [==============================] - 979s 217ms/step - loss: 1.3062 - accuracy: 0.6530 - val_loss: 0.1528 - val_accuracy: 0.9594
Epoch 2/10
4498/4498 [==============================] - 992s 221ms/step - loss: 0.1777 - accuracy: 0.9491 - val_loss: 0.1164 - val_accuracy: 0.9691
Epoch 3/10
4498/4498 [==============================] - 998s 222ms/step - loss: 0.1117 - accuracy: 0.9654 - val_loss: 0.0925 - val_accuracy: 0.9734
Epoch 4/10
4498/4498 [==============================] - 1000s 222ms/step - loss: 0.0789 - accuracy: 0.9758 - val_loss: 0.0992 - val_accuracy: 0.9750
Epoch 5/10
4498/4498 [==============================] - 1001s 223ms/step - loss: 0.0626 - accuracy: 0.9805 - val_loss: 0.0818 - val_accuracy: 0.9783
Epoch 6/10
4498/4498 [==============================] - 1007s 224ms/step - loss: 0.0521 - accuracy: 0.9834 - val_loss: 0.0944 - val_accuracy: 0.9789
Epoch 7/10
4498/4498 [==============================] - 1004s 223ms/step - loss: 0.0475 - accuracy: 0.9863 - val_loss: 0.0935 - val_accuracy: 0.9795
Epoch 8/10
4498/4498 [==============================] - 1013s 225ms/step - loss: 0.0371 - accuracy: 0.9880 - val_loss: 0.0854 - val_accuracy: 0.9781
Epoch 9/10
4498/4498 [==============================] - 896s 199ms/step - loss: 0.0365 - accuracy: 0.9879 - val_loss: 0.0766 - val_accuracy: 0.9806

 Reached to good accuracy


test_labels = test_batches.classes

predictions = model.predict(x=test_batches, steps=len(test_batches),verbose=0)

cm = confusion_matrix(y_true=test_labels, y_pred=predictions.argmax(axis=1))


cm_plot_labels = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16',
                  '17','18','19','20','21','22','23','24','25','26','27','28','29','30','31'
                 ]
plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion Matrix')

结果混淆矩阵

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2021-11-21 14:20:14

有一些技巧可以帮助解决程序匹配问题:

  1. 加入数据增强后,该方法在每次输入时都会进行轻微的旋转、随机裁剪等变换,模型会看到更多相同图像的例子,这将有助于模型更好地推广。
  2. 在训练过程中,加入脱落层,这一层将随机地将输入单元设置为0,因此在过拟合之前,该模型将创造更多的划时代。
  3. L1和L2 正则化,这种方法通过将它们加到总损失中来惩罚权重的绝对值。(在这里输入链接描述)
  4. 最好用callback = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', patience=3)来改变您的回调,我认为您的模型在仍然有改进的空间时停止了。
票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/70054689

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档