当试图将为旧PyTorch编写的代码转换为1.9时,我会得到以下错误:
(fashcomp) [jalal@goku fashion-compatibility]$ python main.py --name test_baseline --learned --l2_embed --datadir ../../../data/fashion/
/scratch3/venv/fashcomp/lib/python3.8/site-packages/torchvision/transforms/transforms.py:310: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.
warnings.warn("The use of the transforms.Scale transform is deprecated, " +
+ Number of params: 3191808
<class 'torch.utils.data.dataloader.DataLoader'>
/scratch3/venv/fashcomp/lib/python3.8/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Traceback (most recent call last):
File "main.py", line 329, in <module>
main()
File "main.py", line 167, in main
train(train_loader, tnet, criterion, optimizer, epoch)
File "main.py", line 240, in train
print('Train Epoch: {} [{}/{}]\t'
File "/scratch3/venv/fashcomp/lib/python3.8/site-packages/torch/_tensor.py", line 561, in __format__
return object.__format__(self, format_spec)
TypeError: unsupported format string passed to Tensor.__format__
下面是代码中有问题的部分:
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{}]\t'
'Loss: {:.4f} ({:.4f}) \t'
'Acc: {:.2f}% ({:.2f}%) \t'
'Emb_Norm: {:.2f} ({:.2f})'.format(
epoch, batch_idx * num_items, len(train_loader.dataset),
losses.val, losses.avg,
100. * accs.val, 100. * accs.avg, emb_norms.val, emb_norms.avg))
我从这个错误报告那里看到,到两年前,还没有为这个问题提供任何解决方案。对于如何解决这个问题,你有什么建议吗?或者任何一种选择?
代码来自这里。
发布于 2021-09-01 22:59:09
如果尝试以特定方式格式化torch.Tensor
,则此错误是可重复的:
>>> print('{:.2f}'.format(torch.rand(1)))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-ece663be5b5c> in <module>()
----> 1 print('{:.2f}'.format(torch.tensor([1])))
/usr/local/lib/python3.7/dist-packages/torch/_tensor.py in __format__(self, format_spec)
559 if self.dim() == 0:
560 return self.item().__format__(format_spec)
--> 561 return object.__format__(self, format_spec)
562
563 def __ipow__(self, other): # type: ignore[misc]
TypeError: unsupported format string passed to Tensor.__format__
执行'{}'.format(torch.tensor(1))
--即没有任何形成规则--将有效。
这是因为torch.Tensor
没有实现这些特定的格式操作。
一个简单的解决方法是使用torch.Tensor
将item
转换为适当的对应类型。
>>> print('{:.2f}'.format(torch.rand(1).item()))
0.02
应该将此修改应用于涉及print
字符串表达式的所有print
:losses.val
、losses.avg
、accs.val
、accs.avg
、emb_norms.val
和emb_norms.avg
。
https://stackoverflow.com/questions/69021335
复制相似问题