我有两个CSV文件。它们有相同的列,但同一列中的每一行并不是唯一的,如下所示:
gpo_full.csv:
Date hearing_sub_type topic Specific_Date
January,1997 Oversight weather January 12,1997
June,2000 General life June 5,2000
January,1997 General forest January 1,1997
April,2001 Oversight people NaN
June,2000 Oversight depressed June 6,2000
January,1997 General weather January 1,1997
June,2000 Oversight depressed June 5,2000
CAP_cols.csv:
majortopic id Chamber topic Date Specific_Date
21 79846 1 many forest January,1997 January 1,1997
4 79847 2 emotion June,2000 June 6,2000
13 79848 1 NaN May,2001 NaN
7 79849 2 good life June,2000 June 5,2000
21 79850 1 good weather January,1997 January 1,1997
25 79851 1 rain & cloudy January,1997 January 12,1997
6 79852 2 sad & depressed June,2000 June 5,2000
我想使用三个标准来匹配这些数据: Specific_Date、日期和主题。
首先,我想使用“日期”列对这些数据进行分组。接下来,我尝试使用"Specific_Date“列缩小范围,因为本专栏中丢失了一些数据。最后,我希望使用类似于word-embedding这样的类似词来使用"topic“列,以确保gpo_full中的哪些行可以与CAP_cols中的唯一行相对应。
我尝试使用“日期”列对数据进行分组,并将它们合并到JSON文件中。然而,我被困在实现的下一步,缩小范围的具体日期和主题。
我对这个输出的想法是:
{
"Date": "January,1997",
"Specific_Date": "January 12,1997"
"Topic": {"GPO": "weather", "CAP": "rain & cloudy"}
"GPO": {
"hearing_sub_type": "Oversight",
and other columns
}
"CAP": {
"majortopic": "25",
"id": "79851",
"Chamber": "1"
}
},
{
"Date": "January,1997",
"Specific_Date": "January 1,1997"
"Topic": {"GPO": "forest", "CAP": "many forest"}
"GPO": {
"hearing_sub_type": "General",
and other columns
}
"CAP": {
"majortopic": "21",
"id": "79846",
"Chamber": "1"
}
and similar for others}
我已经想了三天了,不知道。任何实现这一点的想法都是非常有帮助的!非常感谢!
发布于 2021-07-19 17:22:20
主题匹配有几个问题,所以您需要扩展我使用的match_topic()
方法,但我添加了一些逻辑,以查看最终不匹配的内容。
results
变量包含一个dict列表,您可以轻松地将其保存为JSON文件。
检查内联注释,以了解我所使用的逻辑的推理。
Sidenote:
如果我是你,我会稍微重组JSON。将topic
作为一个键/值对放在GPO
和CAP
键下,对我来说比拥有一个单独的GPO
和CAP
键/值对的Topic
密钥更有意义。
import csv
from pprint import pprint
import json
# load gpo_full.csv into a list of dict using
# csv.DictReader & list comprehension
with open("path/to/file/gpo_full.csv") as infile:
gpo_full = [item for item in csv.DictReader(infile)]
# do the same for CAP_cols.csv
with open("path/to/file/CAP_cols.csv") as infile:
cap_cols = [item for item in csv.DictReader(infile)]
def match_topic(gpo_topic: str, cap_topic: str) -> bool:
"""We need a function as some of the mapping is not simple
Args:
gpo_topic (str): gpo topic
cap_topic (str): CAP topic
Returns:
bool: True if topics match
"""
# this one is simple
if gpo_topic in cap_topic:
return True
# you need to repeat the below conditional check
# for each custom topic matching
elif gpo_topic == "weather" and cap_topic == "rain & cloudy":
return True
# example secondary topic matching
elif gpo_topic == "foo" and cap_topic == "bar":
return True
# finally return false for no matches
return False
# we need this later
gpo_length = len(gpo_full)
results = []
cap_left_over = []
# do the actual mapping
# this could've been done above, but I separated it intentionally
for cap in cap_cols:
found = False
# first find the corresponding gpo
for index, gpo in enumerate(gpo_full):
if (
gpo["Specific_Date"] == cap["Specific_Date"] # check by date
and match_topic(gpo["topic"], cap["topic"]) # check if topics match
):
results.append({
"Date": gpo["Date"],
"Specific_Date": gpo["Specific_Date"],
"Topic": {
"GPO": gpo["topic"],
"CAP": cap["topic"]
},
"GPO": {
"hearing_sub_type": gpo["hearing_sub_type"]
},
"CAP": {
"majortopic": cap["majortopic"],
"id": cap["id"],
"Chamber": cap["Chamber"]
}
})
# pop & break to remove the gpo item
# this is so you're left over with a list of
# gpo items that didn't match
# it also speeds up further matches
gpo_full.pop(index)
found = True
break
# this is to check if there's stuff left over
if not found:
cap_left_over.append(cap)
with open('path/to/file/combined_json.json', 'w') as outfile:
json.dump(results, outfile, indent=4)
pprint(results)
print(f'\nLength:\n Results: {len(results)}\n CAP: {len(cap)}\n GPO: {gpo_length}')
print('\nLeftover GPO:')
pprint(gpo_full)
print('\nLeftover CAP:')
pprint(cap_left_over)
输出
我已经从输出中删除了pprint(results)
,请参阅JSON。
Length:
Results: 5
CAP: 6
GPO: 7
Leftover GPO:
[{'Date': 'April,2001',
'Specific_Date': 'NaN ',
'hearing_sub_type': 'Oversight',
'topic': 'people'},
{'Date': 'June,2000',
'Specific_Date': 'June 6,2000',
'hearing_sub_type': 'Oversight',
'topic': 'depressed'}]
Leftover CAP:
[{'Chamber': '2',
'Date': 'June,2000',
'Specific_Date': 'June 6,2000',
'id': '79847',
'majortopic': '4',
'topic': 'emotion'},
{'Chamber': '1',
'Date': 'May,2001',
'Specific_Date': 'NaN',
'id': '79848',
'majortopic': '13',
'topic': 'NaN'}]
path/to/file/gpo_full.csv
Date,hearing_sub_type,topic,Specific_Date
"January,1997",Oversight,weather,"January 12,1997"
"June,2000",General,life,"June 5,2000"
"January,1997",General,forest,"January 1,1997"
"April,2001",Oversight,people,NaN
"June,2000",Oversight,depressed,"June 6,2000"
"January,1997",General,weather,"January 1,1997"
"June,2000",Oversight,depressed,"June 5,2000"
path/to/file/CAP_cols.csv
majortopic,id,Chamber,topic,Date,Specific_Date
21,79846,1,many forest,"January,1997","January 1,1997"
4,79847,2,emotion,"June,2000","June 6,2000"
13,79848,1,NaN,"May,2001","NaN"
7,79849,2,good life,"June,2000","June 5,2000"
21,79850,1,good weather,"January,1997","January 1,1997"
25,79851,1,rain & cloudy,"January,1997","January 12,1997"
6,79852,2,sad & depressed,"June,2000","June 5,2000"
path/to/file/combined_json.json
[
{
"Date": "January,1997",
"Specific_Date": "January 1,1997",
"Topic": {
"GPO": "forest",
"CAP": "many forest"
},
"GPO": {
"hearing_sub_type": "General"
},
"CAP": {
"majortopic": "21",
"id": "79846",
"Chamber": "1"
}
},
{
"Date": "June,2000",
"Specific_Date": "June 5,2000",
"Topic": {
"GPO": "life",
"CAP": "good life"
},
"GPO": {
"hearing_sub_type": "General"
},
"CAP": {
"majortopic": "7",
"id": "79849",
"Chamber": "2"
}
},
{
"Date": "January,1997",
"Specific_Date": "January 1,1997",
"Topic": {
"GPO": "weather",
"CAP": "good weather"
},
"GPO": {
"hearing_sub_type": "General"
},
"CAP": {
"majortopic": "21",
"id": "79850",
"Chamber": "1"
}
},
{
"Date": "January,1997",
"Specific_Date": "January 12,1997",
"Topic": {
"GPO": "weather",
"CAP": "rain & cloudy"
},
"GPO": {
"hearing_sub_type": "Oversight"
},
"CAP": {
"majortopic": "25",
"id": "79851",
"Chamber": "1"
}
},
{
"Date": "June,2000",
"Specific_Date": "June 5,2000",
"Topic": {
"GPO": "depressed",
"CAP": "sad & depressed"
},
"GPO": {
"hearing_sub_type": "Oversight"
},
"CAP": {
"majortopic": "6",
"id": "79852",
"Chamber": "2"
}
}
]
https://stackoverflow.com/questions/68442446
复制相似问题