我试图生成长篇PDF的摘要。所以,我所做的,首先我把我的pdf转换成文字使用pdfminer.six
库。接下来,我使用了讨论这里中提供的两个函数。
守则:
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
bart_model = BartModel.from_pretrained("facebook/bart-large", return_dict=True)
# generate chunks of text \ sentences <= 1024 tokens
def nest_sentences(document):
nested = []
sent = []
length = 0
for sentence in nltk.sent_tokenize(document):
length += len(sentence)
if length < 1024:
sent.append(sentence)
else:
nested.append(sent)
sent = [sentence]
length = len(sentence)
if sent:
nested.append(sent)
return nested
# generate summary on text with <= 1024 tokens
def generate_summary(nested_sentences):
device = 'cuda'
summaries = []
for nested in nested_sentences:
input_tokenized = bart_tokenizer.encode(' '.join(nested), truncation=True, return_tensors='pt')
input_tokenized = input_tokenized.to(device)
summary_ids = bart_model.to(device).generate(
input_tokenized,
length_penalty=3.0,
min_length=30,
max_length=100,
)
output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
summaries.append(output)
summaries = [sentence for sublist in summaries for sentence in sublist]
return summaries
然后,为了得到总结,我做了:
nested_sentences = nest_sentences(text)
其中,text
是一个长度在10K左右的字符串,我用pdf库进行了转换。
summary = generate_summary(nested_sentences)
然后,我得到以下错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-15-d5aa7709bb5f> in <module>()
----> 1 summary = generate_summary(nested_sentences)
3 frames
<ipython-input-11-8554509269e0> in generate_summary(nested_sentences)
28 length_penalty=3.0,
29 min_length=30,
---> 30 max_length=100,
31 )
32 output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
/usr/local/lib/python3.7/dist-packages/torch/autograd/grad_mode.py in decorate_context(*args, **kwargs)
26 def decorate_context(*args, **kwargs):
27 with self.__class__():
---> 28 return func(*args, **kwargs)
29 return cast(F, decorate_context)
30
/usr/local/lib/python3.7/dist-packages/transformers/generation_utils.py in generate(self, input_ids, max_length, min_length, do_sample, early_stopping, num_beams, temperature, top_k, top_p, repetition_penalty, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, length_penalty, no_repeat_ngram_size, encoder_no_repeat_ngram_size, num_return_sequences, max_time, max_new_tokens, decoder_start_token_id, use_cache, num_beam_groups, diversity_penalty, prefix_allowed_tokens_fn, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, forced_bos_token_id, forced_eos_token_id, remove_invalid_values, synced_gpus, **model_kwargs)
1061 return_dict_in_generate=return_dict_in_generate,
1062 synced_gpus=synced_gpus,
-> 1063 **model_kwargs,
1064 )
1065
/usr/local/lib/python3.7/dist-packages/transformers/generation_utils.py in beam_search(self, input_ids, beam_scorer, logits_processor, stopping_criteria, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, **model_kwargs)
1799 continue # don't waste resources running the code we don't need
1800
-> 1801 next_token_logits = outputs.logits[:, -1, :]
1802
1803 # hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
AttributeError: 'Seq2SeqModelOutput' object has no attribute 'logits'
我找不到与这个错误有关的任何东西,所以如果有人能帮忙,或者有什么更好的方法来为长的文本生成摘要,我会非常感激。
提前谢谢你!
发布于 2021-07-16 04:55:22
这里的问题是BartModel行。将此转换为BartForConditionalGeneration类,问题将得到解决。实际上,生成实用程序假定它是一个可以用于语言生成的模型,在这种情况下,BartModel只是没有LM头的基础。
https://stackoverflow.com/questions/68343073
复制相似问题