错误如下所示,可以在这里找到完整的日志:https://pastebin.com/raw/0WQw8ktB
2021-06-10 22:03:04.201770: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10 2021-06-10 22:03:04.420481: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7 2021-06-10 22:03:05.034154: E tensorflow/stream_executor/cuda/cuda_dnn.cc:319] Loaded runtime CuDNN library: 7.4.2 but source was compiled with:
7.6.4. CuDNN library major and minor version needs to match or have higher minor version in case of CuDNN 7.0 or later version. If using a binary install, upgrade your CuDNN library. If building from sources, make sure the library loaded at runtime is compatible with the version specified during compile configuration. 2021-06-10 22:03:05.038684: E tensorflow/stream_executor/cuda/cuda_dnn.cc:319] Loaded runtime CuDNN library: 7.4.2 but source was compiled with: 7.6.4. CuDNN library major and minor version needs to match or have higher minor version in case of CuDNN 7.0 or later version. If using a binary install, upgrade your CuDNN library. If building from sources, make sure the library loaded at runtime is compatible with the version specified during compile configuration.
这些是我从nvidia档案馆看到的:
https://developer.nvidia.com/rdp/cudnn-archive
Download cuDNN v7.6.4 (September 27, 2019), for CUDA 10.1
Download cuDNN v7.6.4 (September 27, 2019), for CUDA 10.0
Download cuDNN v7.6.4 (September 27, 2019), for CUDA 9.2
Download cuDNN v7.6.4 (September 27, 2019), for CUDA 9.0
正如您所看到的,CUDA 10.2没有cuDNN,但是,我需要在我的框架的其余部分使用CUDA 10.2。tensorflow-GPU2.2使用CUDA 10.2,但我得到了这个错误,这意味着我需要使用cuDNN 7.6.4而不是7.4.2
python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)"
v2.2.0-rc4-8-g2b96f3662b 2.2.0
GPU模型和内存:
GeForce 1080 Ti (2x)每个12 2x内存
$ stat /usr/local/cuda
File: ‘/usr/local/cuda’ -> ‘/usr/local/cuda-10.2’
Size: 20 Blocks: 0 IO Block: 4096 symbolic link
Device: fd00h/64768d Inode: 67157410 Links: 1
Access: (0777/lrwxrwxrwx) Uid: ( 0/ root) Gid: ( 0/ root)
Context: unconfined_u:object_r:usr_t:s0
Access: 2021-06-10 22:12:20.673080083 -0400
Modify: 2020-09-21 09:39:18.559883390 -0400
Change: 2020-09-21 09:39:18.559883390 -0400
Birth: -
和
[GCC 7.3.1 20180303 (Red Hat 7.3.1-5)] on linux
和
Python 3.8.5 (default, Mar 31 2021, 02:37:07)
tensorflow-GPU2.2是使用pip安装的。和
$ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch
Distributor ID: CentOS
Description: CentOS Linux release 7.9.2009 (Core)
Release: 7.9.2009
Codename: Core
我也看到了这个这里,但是我找不到下载文件:
发布于 2021-06-11 22:23:09
从NVIDIA官方网站下载cuDNN 7.6.5
之后,使用这些命令安装CUDA 10.2
cudnn-10.2-linux-x64-v7.6.5.32.tgz
:
$ sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
$ sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
然后:
$ export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH
https://stackoverflow.com/questions/67931031
复制相似问题