我正在尝试使用dplyr::the ()和dplyr::in ()来获得带有行和列中变量的几个汇总统计信息的tibble。我只能通过使用dplyr::bind_rows()实现这一结果,但我想知道是否有一种更优雅的方法来获得相同的输出。
> library(tidyverse)
── Attaching packages ────────────────────────────────────────────── tidyverse 1.3.1 ──
✔ ggplot2 3.3.3 ✔ purrr 0.3.4
✔ tibble 3.1.1 ✔ dplyr 1.0.6
✔ tidyr 1.1.3 ✔ stringr 1.4.0
✔ readr 1.4.0 ✔ forcats 0.5.1
── Conflicts ───────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
>
> bind_rows(min = summarize(starwars, across(where(is.numeric), min,
+ na.rm = TRUE)),
+ median = summarize(starwars, across(where(is.numeric), median,
+ na.rm = TRUE)),
+ mean = summarize(starwars, across(where(is.numeric), mean, na.rm = TRUE)),
+ max = summarize(starwars, across(where(is.numeric), max, na.rm = TRUE)),
+ sd = summarize(starwars, across(where(is.numeric), sd, na.rm = TRUE)),
+ .id = "statistic")
# A tibble: 5 x 4
statistic height mass birth_year
<chr> <dbl> <dbl> <dbl>
1 min 66 15 8
2 median 180 79 52
3 mean 174. 97.3 87.6
4 max 264 1358 896
5 sd 34.8 169. 155. 为什么不能直接做总结呢?似乎比使用一个函数列表更优雅,正如共线小体所建议的。这是否违反了整洁数据框架的原则?(在我看来,把一堆数据帧放在一起看上去不那么整齐。)
发布于 2021-05-18 16:20:07
下面是一种使用purrr迭代函数列表的方法。这实际上是您在使用bind_rows()时所做的事情,但使用的代码较少。
library(dplyr)
library(purrr)
funs <- lst(min, median, mean, max, sd)
map_dfr(funs,
~ summarize(starwars, across(where(is.numeric), .x, na.rm = TRUE)),
.id = "statistic")
# # A tibble: 5 x 4
# statistic height mass birth_year
# <chr> <dbl> <dbl> <dbl>
# 1 min 66 15 8
# 2 median 180 79 52
# 3 mean 174. 97.3 87.6
# 4 max 264 1358 896
# 5 sd 34.8 169. 155.发布于 2021-05-18 15:59:45
这在您想要的输出中得到了解决,但它并没有那么花哨。
starwars %>%
summarise(across(
where(is.numeric),
.fns = list(
min = min,
median = median,
mean = mean,
max = max,
sd = sd
),
na.rm = TRUE,
.names = "{.col}_{.fn}")) %>%
pivot_longer(cols = everything()) %>%
mutate(statistic = str_match(name, pattern = ".+_(.+)")[,2],
name = str_match(name, pattern = "(.+)_.+")[,2]) %>%
pivot_wider(names_from = name, values_from = value)发布于 2021-05-18 16:10:16
我会这样做:
starwars %>%
summarise(across(where(is.numeric), stat_funs,
na.rm = TRUE, .names = "{.col}__{.fn}")) %>%
pivot_longer(everything()) %>%
separate(name, c('v', 'f'), sep = '__') %>%
pivot_wider(names_from = v, values_from = value)
# f height mass birth_year
# <chr> <dbl> <dbl> <dbl>
# 1 min 66 15 8
# 2 median 180 79 52
# 3 mean 174. 97.3 87.6
# 4 max 264 1358 896
# 5 sd 34.8 169. 155. https://stackoverflow.com/questions/67589798
复制相似问题