首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >GG图例叠加所有形状/从图例中删除一个项目

GG图例叠加所有形状/从图例中删除一个项目
EN

Stack Overflow用户
提问于 2021-05-09 15:40:11
回答 1查看 75关注 0票数 2

有一个问题,我的图形,我想有不同的形状为某些价值。但是在传说中,所有的东西都堆叠在一起,因此传说已经不清楚了。此外,我想从传说中删除日本,或者找其他方法使它变成红色和shape=17。也许在过滤器Japan =‘FALSE’中添加?我试过但没有成功..。

以下是我的数据样本:

代码语言:javascript
运行
复制
    structure(list(Country = c("Albania", "Aruba", "Austria", "Barbados", 
"Bosnia and Herzegovina", "Canada", "China, Hong Kong SAR", "China, Macao SAR", 
"Croatia", "Curaçao", "Denmark", "Finland", "France", "Germany", 
"Iceland", "Italy", "Japan", "Latvia", "Lithuania", "Malta", 
"Mauritius", "Montenegro", "Netherlands", "New Zealand", "Poland", 
"Portugal", "Republic of Korea", "Serbia", "Singapore", "Slovenia", 
"Sri Lanka", "Taiwan", "Thailand", "Trinidad and Tobago", "United States of America"
), `Dependency Ratio 1990` = c(0.371731839842905, 0.42945960478559, 
0.698167620530499, 0.444513116903726, 0.511357742868368, 0.519783119456753, 
0.444426949479237, 0.30306654331295, 0.723691486939267, 0.424414908111054, 
0.68769508504734, 0.641530173960242, 0.690189226564259, 0.755969184286434, 
0.520917100019657, 0.763735128335739, 0.692461922514607, 0.728970209495916, 
0.655093765838824, 0.556158238426314, 0.308439455191019, 0.551893405455789, 
0.582543266573117, 0.548269437314668, 0.592240027149362, 0.744368260326749, 
0.33818760118961, 0.653157768845158, 0.294237762460344, 0.611402526341597, 
0.354595845574429, 0.391092962761626, 0.331304119150256, 0.35111793456609, 
0.562804979721953), `Average Age 1990` = c(40.3688042387203, 
42.5004114258846, 46.6904752788518, 42.5683625031078, 42.4530074518545, 
44.2409448871874, 42.0677766503007, 39.7173235436725, 46.2329924328207, 
42.2501753565583, 47.1375106133558, 46.3380103826365, 46.6915593676301, 
46.9202073747455, 44.129974503284, 47.1071528898825, 46.6077408054755, 
46.4664135824761, 45.460688263743, 44.9450928096016, 39.2332051727974, 
43.66848, 45.1863467813393, 44.5466909246095, 44.9318462263063, 
46.8407998745322, 39.6873706785703, 45.3128111624097, 39.2982502106955, 
45.1205082490539, 40.2124158913374, 40.9051762916043, 39.4534335710941, 
40.4173693037492, 45.0904477728946), ...4 = c(NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), 
    `Dependency Ratio 2000` = c(0.457221087782508, 0.45940989018547, 
    0.742565467519652, 0.541204030550029, 0.597208883500012, 
    0.622668782217446, 0.473107405821069, 0.344264744501091, 
    0.780230513979289, 0.633789601501269, 0.790840886898238, 
    0.816743961984905, 0.766496601277572, 0.821136017787255, 
    0.572251283384235, 0.849390138872188, 0.927739183233871, 
    0.791488299481733, 0.704545225683664, 0.702609326498817, 
    0.35385418751795, 0.612564625368555, 0.69550083971213, 0.617845149047375, 
    0.611138887992547, 0.758176723785889, 0.399735388267277, 
    0.715467873467691, 0.383896159972764, 0.671137540638121, 
    0.407831309113246, 0.419443507121452, 0.374126385687095, 
    0.409593048372564, 0.615930392620661), `Average Age 2000` = c(42.9309383891972, 
    43.8674007980144, 47.739334648896, 45.3560289004102, 45.2990249348384, 
    46.3058678455289, 44.3575197674921, 42.5567755821042, 47.8706196243093, 
    46.6926342578517, 47.9056748231027, 48.2912968951969, 48.1201704908476, 
    48.7598382100637, 45.3475147626354, 48.7908038019529, 48.7739160208226, 
    47.837540150878, 46.9150297452015, 46.5384376276976, 41.1677637838199, 
    45.6830176554619, 46.9484767952653, 46.0162750047118, 45.6870193241911, 
    47.5083105450284, 41.9472090972845, 46.7580169116961, 42.3830413567395, 
    46.6274879755993, 41.6098644987726, 42.77485916275, 41.5907978667698, 
    41.9719792296039, 46.2781534087236), ...7 = c(NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA), `Dependency Ratio 2015` = c(0.769855001031037, 0.896573728647162, 
    0.952116351996821, 0.847635802309437, 0.907658891504387, 
    0.913339561634508, 0.877436210055064, 0.597279210234922, 
    1.04631340359464, 1.01174318826707, 0.977891738355926, 1.08472890326446, 
    1.01372962185931, 1.12997699958302, 0.77882885539859, 1.08347132170333, 
    1.20679093156161, 0.990147667477283, 0.994357961860711, 0.950194923573131, 
    0.666562280517562, 0.828817278052088, 0.989460150334804, 
    0.831814166715077, 0.847326002560978, 1.03326726133893, 0.749863481391909, 
    0.917215066264046, 0.671774028057953, 0.971441198307662, 
    0.611354032233621, 0.748057645284422, 0.665957813686028, 
    0.602213503073687, 0.855245238291093), `Average Age 2015` = c(46.3902100558352, 
    47.9818955923079, 49.878498965043, 48.4578763127188, 48.3870694416244, 
    48.7063314226308, 48.5131007402609, 44.1281261495054, 50.522561636728, 
    49.6455293947711, 49.9810732770387, 50.7119476819108, 50.6805196046482, 
    51.5236122201751, 47.3079677856577, 51.8838669025279, 53.2344169277342, 
    50.0674941000466, 49.9057070057583, 49.1748722211516, 45.3413745873924, 
    47.6617051653597, 49.9107746561504, 48.0022465682781, 48.1684244717051, 
    51.1526322354916, 47.160655712273, 49.0269050604693, 45.5481140676913, 
    50.0264456515826, 44.8882173741791, 47.0138589294768, 46.131374630996, 
    44.5204789350954, 48.0998439723386), `rgdpe 1990` = c(12005.7568359375, 
    2575.25561523438, 208007.234375, 4099.8515625, 6946.330078125, 
    915724.6875, 151044.28125, 9127.78125, 64448.71484375, NA, 
    144018.203125, 136194.359375, 1581529.625, 2204488.5, 8510.248046875, 
    1560881.5, 3552613.25, 44957.03515625, 53623.6875, 5354.54541015625, 
    11257.8095703125, 6702.1552734375, 427072.25, 76859.65625, 
    335254.875, 157535.140625, 565140.75, 113435.8046875, 64860.5703125, 
    42714.70703125, 55257.37109375, 430917.25, 308367.4375, 15085.6611328125, 
    9847675), `pop 1990` = c(3.286073, 0.062149, 7.723949, 0.260936, 
    4.463423, 27.541319, 5.727938, 0.343808, 4.776374, NA, 5.141115, 
    4.996222, 58.235697, 79.053984, 0.255043, 57.048236, 124.50524, 
    2.664439, 3.696035, 0.362015, 1.055868, 0.615002, 14.965448, 
    3.398172, 37.960193, 9.895364, 42.918419, 9.517675, 3.012966, 
    2.006405, 17.325773, 20.278946, 56.558186, 1.221116, 252.120309
    ), `emp 1990` = c(1.32407820224762, NA, 3.56034135818481, 
    0.105200000107288, 1.68987882137299, 13.2902002334595, 2.73075985908508, 
    0.16329999268055, 2.17813229560852, NA, 2.63417220115662, 
    2.47324681282043, 23.6595039367676, 39.5477294921875, 0.138074412941933, 
    22.8031978607178, 65.1040191650391, 1.25425291061401, 1.70560574531555, 
    0.132750615477562, 0.403737008571625, 0.174824863672256, 
    6.80782461166382, 1.52131986618042, 15.0829668045044, 4.46721506118774, 
    18.2060832977295, 4.61394643783569, 1.52955627441406, 1.1292530298233, 
    5.04270553588867, 8.64918994903564, 28.7045097351074, 0.374099999666214, 
    123.046020507812), ...5 = c(NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), `rgdpe 2000` = c(15180.880859375, 
    4031.13427734375, 314579.6875, 6460.9755859375, 21482.595703125, 
    1276875.5, 256729.140625, 13199.31640625, 58379.2734375, 
    NA, 203091.515625, 186055.46875, 2135621.25, 3030253, 11653.5791015625, 
    2081385.625, 4696670.5, 26473.306640625, 42346.78125, 9706.8212890625, 
    18593.318359375, 4850.50634765625, 691869.625, 114914.1171875, 
    563679.1875, 259576.953125, 1150272, 60002.0703125, 166273.53125, 
    48606.53125, 90442.875, 789527.25, 504829.28125, 18303.63671875, 
    14110581), `pop 2000` = c(3.129243, 0.090853, 8.069276, 0.271515, 
    3.751176, 30.588383, 6.606327, 0.427782, 4.428075, NA, 5.341194, 
    5.187954, 60.874357, 81.400882, 0.280435, 56.692178, 127.524174, 
    2.384164, 3.501839, 0.393645, 1.185145, 0.613559, 15.926188, 
    3.858999, 38.556693, 10.297112, 47.379241, 7.516346, 4.028871, 
    1.987717, 18.777601, 22.18453, 62.952642, 1.267153, 281.710909
    ), `emp 2000` = c(0.962967455387115, 0.0419000014662743, 
    3.7599310874939, 0.12899999320507, 0.643303751945496, 14.952766418457, 
    3.20262169837952, 0.195299997925758, 1.67029082775116, NA, 
    2.75595617294312, 2.30501818656921, 25.6252250671387, 39.6031150817871, 
    0.1570855230093, 22.91796875, 65.9155044555664, 0.930018603801727, 
    1.40124833583832, 0.146938025951385, 0.464872002601624, 0.176752656698227, 
    8.20334815979004, 1.81842231750488, 14.4786930084229, 5.076171875, 
    21.4411239624023, 3.0847954750061, 2.08465480804443, 0.917375922203064, 
    6.30462980270386, 9.59665679931641, 31.47385597229, 0.503100037574768, 
    138.636108398438), ...9 = c(NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), `rgdpe 2015` = c(32037.935546875, 
    3959.59252929688, 448794.71875, 4856.21044921875, 40599.22265625, 
    1659691.75, 411350.65625, 62493.578125, 99181.7265625, 4041.00463867188, 
    278112.53125, 237412.921875, 2772463.25, 3915258.25, 16865.345703125, 
    2296760.75, 5094436, 51517.390625, 87529.2890625, 17455.76171875, 
    25619.560546875, 10165.248046875, 872643.75, 174613.65625, 
    1069768.375, 314019.625, 1928056.875, 108470.875, 451476.4375, 
    68875.1796875, 242116.15625, 1125999, 1108115.875, 38140.46484375, 
    18905122), `pop 2015` = c(2.890513, 0.104341, 8.67866, 0.285324, 
    3.429361, 36.026676, 7.185996, 0.602085, 4.232874, 0.159847, 
    5.688695, 5.481122, 66.596315, 81.787411, 0.330243, 60.578494, 
    127.985133, 1.997674, 2.93188, 0.433559, 1.259456, 0.626956, 
    16.938499, 4.614532, 38.034079, 10.368351, 50.823093, 7.095383, 
    5.592152, 2.071199, 20.908027, 23.462914, 68.714511, 1.370328, 
    320.87831), `emp 2015` = c(0.926395297050476, 0.0467174984514713, 
    4.27823972702026, 0.128199994564056, 0.616872131824493, 18.3558368682861, 
    3.77715754508972, 0.396699994802475, 1.69973313808441, 0.0617999993264675, 
    2.83158588409424, 2.52453279495239, 27.3850765228271, 42.5355796813965, 
    0.181162342429161, 24.4446144104004, 66.9830322265625, 0.897909104824066, 
    1.35488307476044, 0.191138163208961, 0.563370883464813, 0.221699982881546, 
    8.80725860595703, 2.36527323722839, 15.8249969482422, 4.60829973220825, 
    26.079252243042, 2.56693267822266, 3.65548992156982, 0.950674414634705, 
    7.83100032806396, 11.1978015899658, 37.9529876708984, 0.623300015926361, 
    150.248474121094), GDP_per_capita_1990 = c(3653.52712369369, 
    41436.7989064084, 26930.1667288326, 15712.0963090566, 1556.27868524337, 
    33249.1224367286, 26369.74793547, 26549.0659030622, 13493.2303968973, 
    NA, 28013.0289100711, 27259.4691298745, 27157.3915394195, 
    27885.8621470614, 33367.895009371, 27360.7320654051, 28533.8452421762, 
    16872.9834521451, 14508.4360672991, 14790.949021881, 10662.1372845019, 
    10897.7780128154, 28537.2178634412, 22617.9417198423, 8831.74843183753, 
    15920.0955745539, 13167.790500391, 11918.4364550691, 21527.1497628915, 
    21289.1749329024, 3189.31634933402, 21249.4894951641, 5452.2158383934, 
    12353.995142814, 39059.4277750151), GDP_per_capita_2015 = c(11083.8233721402, 
    37948.5775418759, 51712.4439429589, 17019.9858729681, 11838.7135843237, 
    46068.41191788, 57243.3739526156, 103795.274961177, 23431.2966940429, 
    25280.4534252872, 48888.6346077615, 43314.6574506096, 41630.8807777127, 
    47871.1601471283, 51069.5024667442, 37913.7974278463, 39804.9045274657, 
    25788.6875561278, 29854.3218216639, 40261.5600616064, 20341.7670382094, 
    16213.6546214966, 51518.3635810942, 37839.9491541071, 28126.5749855544, 
    30286.3613509998, 37936.6300079375, 15287.5292285138, 80733.9352542635, 
    33253.7721809927, 11580.0575659291, 47990.5863355251, 16126.3735835943, 
    27833.0916713006, 58916.7962147395), change_log_GDP_per_cap_1990_2015 = c(1.10979365523243, 
    -0.0879373277889428, 0.652451349776046, 0.0799574118764497, 
    2.02907746023446, 0.326099133412088, 0.775094455358737, 1.36342588458029, 
    0.551884486717116, NA, 0.556875228192604, 0.46309013522626, 
    0.427192960710386, 0.540393411165555, 0.425593287986558, 
    0.32620624489414, 0.332899198982464, 0.424222198470275, 0.721599336011078, 
    1.00138172800831, 0.645977367508866, 0.39729484866726, 0.590729193215088, 
    0.514621927745218, 1.15836185302803, 0.643115306926695, 1.05814340225474, 
    0.248950929776939, 1.32184407992377, 0.44596948530371, 1.28947786000817, 
    0.814672002339478, 1.08443394063506, 0.812246156576203, 0.411041939497887
    ), change_dependency_ratio_1990_2015 = c(0.398123161188132, 
    0.467114123861573, 0.253948731466323, 0.403122685405711, 
    0.396301148636019, 0.393556442177755, 0.433009260575827, 
    0.294212666921972, 0.322621916655375, 0.587328280156014, 
    0.290196653308586, 0.44319872930422, 0.323540395295048, 0.374007815296586, 
    0.257911755378933, 0.319736193367588, 0.514329009047002, 
    0.261177457981367, 0.339264196021887, 0.394036685146817, 
    0.358122825326543, 0.2769238725963, 0.406916883761686, 0.283544729400408, 
    0.255085975411616, 0.288899001012185, 0.411675880202299, 
    0.264057297418888, 0.377536265597609, 0.360038671966065, 
    0.256758186659192, 0.356964682522796, 0.334653694535773, 
    0.251095568507597, 0.29244025856914)), class = "data.frame", row.names = c(NA, 
-35L))

这是我的密码:

代码语言:javascript
运行
复制
#Adding OECD
#Exclude japan for fig
OECD <- c("Dem. People's Republic of Korea",'Mexico','Chile',
          'New Zealand','Czechia','Hungary','Slovakia','Denmark','Estonia',
          'Finland','Iceland','Ireland','Latvia','Lithuania','Norway',
          'Sweden','United Kingdom','Greece','Italy','Portugal','Slovenia',
          'Spain','Austria','Belgium','France','Germany','Luxembourg',
          'Netherlands','Switzerland','Australia','Canada','United States of America',
          'Poland','Turkey','Israel')

#Figure 2
library(tidyverse)
df  %>%
  mutate(OECD = factor(Country %in% OECD, labels = c("NonOECD","OECD"))) %>% mutate(Japan = factor(Country == 'Japan' , labels=c('FALSE','TRUE')))-> newdata

ggplot() +  
  geom_point(data = filter(newdata, OECD == 'NonOECD'),aes(x = change_dependency_ratio_1990_2015, y = change_log_GDP_per_cap_1990_2015, colour='NonOECD'),shape = 16, size=3) +
   geom_point(data = filter(newdata, Japan == 'TRUE'),aes(x = change_dependency_ratio_1990_2015, y = change_log_GDP_per_cap_1990_2015,colour='Japan'),shape = 17, size=4) +
  geom_point(data = filter(newdata, OECD == 'OECD'),aes(x = change_dependency_ratio_1990_2015, y = change_log_GDP_per_cap_1990_2015, colour='OECD' ),shape = 18, size=4) + 
  
  scale_color_manual(values = c(NonOECD = "cyan4", OECD = "orange",Japan='red'),
                     labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries")) + geom_abline(size=1, col='grey')+
  
  theme_classic()+ theme( panel.grid.major.y =element_line(color='grey', size=0.7),legend.title = element_blank(),
                          panel.grid.minor.y =element_blank(), 
                          legend.background = element_blank(), legend.box.background = element_rect(colour = "black"),
                          legend.spacing.y = unit(0, "mm"),legend.direction = 'horizontal',
                          legend.position = "bottom",aspect.ratio = 0.7, axis.text = element_text(colour = 1, size = 13),)

我得到的例子:

它应该是什么样子:

提前感谢你!!

EN

Stack Overflow用户

回答已采纳

发布于 2021-05-09 16:27:55

下面的代码生成一个与预期输出相等的图。

两个主要的区别是:

runif.:

  1. 问题中没有"Japan"的数据,所以我用"Portugal" (我的国家)代替了"Japan"
  2. 没有记录或未记录的GDP数据,所以我创建了一个带有随机均匀数的新列,

实际上,创建因子OECD很简单,从创建逻辑向量开始,然后使用ifelse将整数值赋给特定国家,在这种情况下,"Portugal"将2添加到其他逻辑向量的元素中,给出FALSE/TRUE + 2 == 0/1 + 2

为了不将情节与主题混为一谈,我还创建了一个自定义主题,最后是代码。

代码语言:javascript
运行
复制
library(tidyverse)

set.seed(2021)

df %>% 
  mutate(OECD = Location %in% OECD,
         OECD = ifelse(Location == "Portugal", 1L, OECD + 2L),
         OECD = factor(OECD, labels = c("Portugal", "NonOECD","OECD"))) %>% 
  mutate(GDP = runif(n(), -2, 2)) %>% 
  ggplot(aes(x = `Dependency Ratio`, y = GDP, color = OECD, shape = OECD, size = OECD)) +  
  geom_point() +
  scale_color_manual(
    values = c(NonOECD = "cyan4", OECD = "orange", Portugal = 'red'),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) + 
  scale_shape_manual(
    values = c(NonOECD = 16, OECD = 18, Portugal = 17),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) +
  scale_size_manual(
    values = c(NonOECD = 4, OECD = 3, Portugal = 4),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) +
  geom_abline(size = 1, col = 'grey') +
  theme_custom_Cas()

为了从图例中删除特殊的国家,将数据进行子集。下面的代码将将%>%管道输出到一个新的数据集,并在绘图中使用它。

代码语言:javascript
运行
复制
set.seed(2021)

df %>% 
  mutate(OECD = Location %in% OECD,
         OECD = ifelse(Location == "Portugal", 1L, OECD + 2L),
         OECD = factor(OECD, labels = c("Portugal", "NonOECD","OECD"))) %>% 
  mutate(GDP = runif(n(), -2, 2)) -> newdata

ggplot(newdata, aes(x = `Dependency Ratio`, y = GDP, color = OECD, shape = OECD, size = OECD)) +  
  geom_point(data = subset(newdata, OECD != "Portugal")) +
  # In the special country's layer the color, shape and size must be
  # outside aes() and show.legend = FALSE
  geom_point(
    data = subset(newdata, OECD == "Portugal"),
    color = "red", shape = 17, size = 4,
    show.legend = FALSE
  ) +
  scale_color_manual(
    values = c(NonOECD = "cyan4", OECD = "orange", Portugal = 'red'),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) + 
  scale_shape_manual(
    values = c(NonOECD = 16, OECD = 18, Portugal = 17),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) +
  scale_size_manual(
    values = c(NonOECD = 4, OECD = 3, Portugal = 4),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) +
  geom_abline(size = 1, col = 'grey') +
  theme_custom_Cas()

为了具有填充颜色,必须更改点的形状。见help("points")中最右边的点,用灰色填入。这些形状允许边框(ggplot审美color)和填充颜色(ggplot审美fill)。

代码语言:javascript
运行
复制
ggplot(newdata, aes(x = `Dependency Ratio`, y = GDP, fill = OECD, shape = OECD, size = OECD)) +  
  geom_point(data = subset(newdata, OECD != "Portugal")) +
  # In the special country's layer the color, shape and size must be
  # outside aes() and show.legend = FALSE
  geom_point(
    data = subset(newdata, OECD == "Portugal"),
    fill = "red", shape = 24, size = 4,
    show.legend = FALSE
  ) +
  scale_fill_manual(
    values = c(NonOECD = "cyan4", OECD = "orange", Portugal = 'red'),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) + 
  scale_shape_manual(
    values = c(NonOECD = 21, OECD = 23, Portugal = 24),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) +
  scale_size_manual(
    values = c(NonOECD = 4, OECD = 3, Portugal = 4),
    labels = c(NonOECD = "All Countries except OECD", OECD = "OECD countries", Portugal = "Portugal")
  ) +
  geom_abline(size = 1, col = 'grey') +
  theme_custom_Cas()

自定义主题代码。

代码语言:javascript
运行
复制
theme_custom_Cas <- function(){ 
  theme_classic() %+replace%    #replace elements we want to change
    theme(
      panel.grid.major.y = element_line(color = 'grey', size = 0.7),
      legend.title = element_blank(),
      panel.grid.minor.y = element_blank(), 
      legend.background = element_blank(), 
      legend.box.background = element_rect(colour = "black"),
      legend.spacing.y = unit(0, "mm"),
      legend.direction = 'horizontal',
      legend.position = "bottom",
      aspect.ratio = 0.7, 
      axis.text = element_text(colour = 1, size = 13)    
    )
}
票数 2
EN
查看全部 1 条回答
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/67459523

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档