首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >(215:断言失败)在函数'dft‘中键入== CV_32FC1、分部、==、CV_32FC2、CV_32FC2、==、CV_64FC1、==、==、CV_64FC2类型

(215:断言失败)在函数'dft‘中键入== CV_32FC1、分部、==、CV_32FC2、CV_32FC2、==、CV_64FC1、==、==、CV_64FC2类型
EN

Stack Overflow用户
提问于 2020-10-30 07:56:57
回答 2查看 3K关注 0票数 2

我正试图用傅里叶校正图像中的曝光。这是我面临的错误

代码语言:javascript
运行
复制
  5     padded = np.log(padded + 1) #so we never have log of 0
  6     global complex
  7     complex = cv2.dft(np.float32(padded)/255.0, flags = cv2.DFT_COMPLEX_OUTPUT)
  8     complex = np.fft.fftshift(complex)
  9     img = 20 * np.log(cv2.magnitude(complex[:,:,0], complex[:,:,1]))

  error: OpenCV(4.4.0) /tmp/pip-req-build-njn2fp78/opencv/modules/core/src/dxt.cpp:3335: error: (-215:Assertion failed) type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 in function 'dft'

我的代码:

代码语言:javascript
运行
复制
import cv2
import numpy as np
from math import exp, sqrt

image = cv2.imread("2.png")
# grayimg = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
height, width, alpha = image.shape
dft_M = cv2.getOptimalDFTSize(height)
dft_N = cv2.getOptimalDFTSize(width)

#Filter parameters
yh, yl, c, d0, = 0, 0, 0, 0
#User parameters
y_track, d0_track, c_track = 0, 0, 0
complex = 0

def main():
    #copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) 
    #BORDER_CONSTANT = Pad the image with a constant value (i.e. black or 0)
    padded = cv2.copyMakeBorder(image, 0, dft_M - height, 0, dft_N - width, cv2.BORDER_CONSTANT, 0) 
    padded = np.log(padded + 1) #so we never have log of 0
    global complex
    complex = cv2.dft(np.float32(padded)/255.0, flags = cv2.DFT_COMPLEX_OUTPUT)
    complex = np.fft.fftshift(complex)
    img = 20 * np.log(cv2.magnitude(complex[:,:,0], complex[:,:,1]))

    cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
    cv2.imshow("Image", image)
    cv2.resizeWindow("Image", 400, 400)

    cv2.namedWindow('DFT', cv2.WINDOW_NORMAL)
    cv2.imshow("DFT", np.uint8(img))
    cv2.resizeWindow("DFT", 250, 250)

    cv2.createTrackbar("YL", "Image", y_track, 100, setyl)
    cv2.createTrackbar("YH", "Image", y_track, 100, setyh)
    cv2.createTrackbar("C", "Image", c_track, 100, setc)
    cv2.createTrackbar("D0", "Image", d0_track, 100, setd0)

    cv2.waitKey(0)     
    cv2.destroyAllWindows()

def homomorphic():
    global yh, yl, c, d0, complex
    du = np.zeros(complex.shape, dtype = np.float32)
    #H(u, v)
    for u in range(dft_M):
        for v in range(dft_N):
            du[u,v] = sqrt((u - dft_M/2.0)*(u - dft_M/2.0) + (v - dft_N/2.0)*(v - dft_N/2.0))

    du2 = cv2.multiply(du,du) / (d0*d0)
    re = np.exp(- c * du2)
    H = (yh - yl) * (1 - re) + yl
    #S(u, v)
    filtered = cv2.mulSpectrums(complex, H, 0)
     #inverse DFT (does the shift back first)
    filtered = np.fft.ifftshift(filtered)
    filtered = cv2.idft(filtered)
    #normalization to be representable 
    filtered = cv2.magnitude(filtered[:, :, 0], filtered[:, :, 1])
    cv2.normalize(filtered, filtered, 0, 1, cv2.NORM_MINMAX)
    #g(x, y) = exp(s(x, y))
    filtered = np.exp(filtered)
    cv2.normalize(filtered, filtered,0, 1, cv2.NORM_MINMAX)

    cv2.namedWindow('homomorphic', cv2.WINDOW_NORMAL)
    cv2.imshow("homomorphic", filtered)
    cv2.resizeWindow("homomorphic", 600, 550)

def setyl(y_track):
    global yl
    yl = y_track
    if yl == 0:
        yl = 1
    if yl > yh:
        yl = yh - 1
    homomorphic()

def setyh(y_track):
    global yh
    yh = y_track
    if yh == 0:
        yh = 1
    if yl > yh:
        yh = yl + 1
    homomorphic()

def setc(c_track):
    global c
    c = c_track/100.0
    if c == 0:
        c_track = 1    
    homomorphic()

def setd0(d0_track):
    global d0
    d0 = d0_track
    if d0 == 0:
        d0 = 1
    homomorphic()

main()

我不明白我所面临的问题。我怎么才能解决这个问题?

描述

理想的大小,我们可以为图像的新边框大小,在底部和右边(这可以做任何方式)与常量。在填充后,我们可以转换到频域,然后进行移位。

然后,当用户更改轨迹栏时,负责更改其参数的函数调用同态函数。trackbars在主函数处定义,并接受一个限制、一个与该条相关的函数和一个与实际值相对应的变量。条形图保持在0-100的标度范围内,并负责改变滤波器的参数。

EN

回答 2

Stack Overflow用户

发布于 2021-11-06 12:37:50

是的,3d而不是2d是这样的,下面是快速解决方案:

代码语言:javascript
运行
复制
img = cv2.cvtColor(np.float32(image), cv2.COLOR_BGR2GRAY)
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
票数 3
EN

Stack Overflow用户

发布于 2020-10-31 00:55:17

我认为问题是,你有RGB图像,其中有3个渠道。但DFT要求提供一两个频道。

所以你需要把RGB转换成灰色。

我认为这个说法很清楚。(215:断言失败)在函数'dft'中键入==,CV_32FC1,in,类型==,CV_32FC2,CV_64FC1,==,== CV_64FC2

上面说那类型应该是

代码语言:javascript
运行
复制
CV_32FC1: 32-bit float with 1 channel or
CV_32FC2: 32-bit float with 2 channels or
CV_64FC1: 64-bit double with 1 channel or
CV_64FC2: 64-bit double with 2 channels
票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/64604533

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档