首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >用OpenMP在macOS上编译Cython

用OpenMP在macOS上编译Cython
EN

Stack Overflow用户
提问于 2020-10-14 09:13:21
回答 1查看 1.4K关注 0票数 1

我正在学习macOS Mojave 10.14.6,我正在尝试用以下方法从存储库编译c和c++中所需的扩展模块:

python setup.py build_ext --inplace

这给了我以下错误:

代码语言:javascript
运行
复制
No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'
running build_ext
/Users/user/miniconda3/envs/torch/lib/python3.8/site-packages/torch/utils/cpp_extension.py:249: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (g++) is not compatible with the compiler Pytorch was
built with for this platform, which is clang++ on darwin. Please
use clang++ to to compile your extension. Alternatively, you may
compile PyTorch from source using g++, and then you can also use
g++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(

再往下看:

代码语言:javascript
运行
复制
clang: error: unknown argument: '-i'
clang: error: no such file or directory: 'sysroot'
clang: warning: treating 'c' input as 'c++' when in C++ mode, this behavior is deprecated [-Wdeprecated]
clang: error: unsupported option '-fopenmp'
ninja: build stopped: subcommand failed.

(这应该是相关的部分,最近的跟踪还显示了subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.,最后显示了RuntimeError: Error compiling objects for extension)

从我所了解到的,到目前为止我都试过了:

  • 安装文件中的标志-fopenmp是问题之一,似乎OpenMP丢失了。
  • 因此我安装了brew install llvmbrew install libomp
  • PATH=\"/usr/local/bin:$PATH\添加到我的.bash_profile中,希望现在使用新安装的编译器
  • 根据-Xpreprocessor-fopenmp之前的标志这里添加到安装文件中,从而使extra_compile_args=['-Xpreprocessor', '-std=c99', '-O3', '-fopenmp']
  • 我尝试了CC=gcc python setup.py build_ext --inplace,因为关于将'c‘看作' c++’的警告,但是由于我试图构建c和c++模块,所以我不确定应该将变量设置为什么。
  • 我也尝试了CC=/usr/local/opt/llvm/bin/clang++ python setup.py build_ext --inplace,如建议的这里
  • 尝试在不使用-fopenmp (这实际上不是一个选项,因为我需要由OpenMP IIRC提供的并行执行)的情况下构建它,结果基本上是相同的错误,而没有关于OpenMP的错误。
  • 我还需要设置CXXFLAGSCFLAGS吗?
  • 现在,我在conda环境中完成了所有这些工作,蟒蛇似乎提供了自己的工具。我应该用这些吗?所需的MacOSX SDK是什么?

我很抱歉这个问题让人困惑,但对编译器没有事先的了解并试图解决这个问题,就像走投无路.我将非常感谢任何关于这种情况的评论,我很高兴提供任何缺失的信息!

更新:

  • 清除.bash_profile并导出export CC='gcc-10'; export CXX='clang++'消除了火炬警告,但clang问题仍然存在
  • 仍然保留在os.environ['CC'] = 'gcc-10'os.environ['CXX'] = 'clang++中的setup.py

完整的错误消息是:

代码语言:javascript
运行
复制
(torch) [10:48:05] vanessamac: occupancy_networks $ python setup.py build_ext --inplace --verbose
No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'
running build_ext
building 'im2mesh.utils.libkdtree.pykdtree.kdtree' extension
Emitting ninja build file /Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/2] clang++ -MMD -MF '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/_kdtree_core.o'.d -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/numpy/core/include -I/Users/vanessamac/miniconda3/envs/torch/include/python3.8 -c -c '/Users/vanessamac/projects/occupancy_networks/im2mesh/utils/libkdtree/pykdtree/_kdtree_core.c' -o '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/_kdtree_core.o' -std=c99 -O3 -fopenmp -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=kdtree -D_GLIBCXX_USE_CXX11_ABI=0
FAILED: /Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/_kdtree_core.o 
clang++ -MMD -MF '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/_kdtree_core.o'.d -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/numpy/core/include -I/Users/vanessamac/miniconda3/envs/torch/include/python3.8 -c -c '/Users/vanessamac/projects/occupancy_networks/im2mesh/utils/libkdtree/pykdtree/_kdtree_core.c' -o '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/_kdtree_core.o' -std=c99 -O3 -fopenmp -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=kdtree -D_GLIBCXX_USE_CXX11_ABI=0
clang: warning: treating 'c' input as 'c++' when in C++ mode, this behavior is deprecated [-Wdeprecated]
clang: error: unsupported option '-fopenmp'
[2/2] clang++ -MMD -MF '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/kdtree.o'.d -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/numpy/core/include -I/Users/vanessamac/miniconda3/envs/torch/include/python3.8 -c -c '/Users/vanessamac/projects/occupancy_networks/im2mesh/utils/libkdtree/pykdtree/kdtree.c' -o '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/kdtree.o' -std=c99 -O3 -fopenmp -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=kdtree -D_GLIBCXX_USE_CXX11_ABI=0
FAILED: /Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/kdtree.o 
clang++ -MMD -MF '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/kdtree.o'.d -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/include -arch x86_64 -I/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/numpy/core/include -I/Users/vanessamac/miniconda3/envs/torch/include/python3.8 -c -c '/Users/vanessamac/projects/occupancy_networks/im2mesh/utils/libkdtree/pykdtree/kdtree.c' -o '/Users/vanessamac/projects/occupancy_networks/build/temp.macosx-10.9-x86_64-3.8/im2mesh/utils/libkdtree/pykdtree/kdtree.o' -std=c99 -O3 -fopenmp -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=kdtree -D_GLIBCXX_USE_CXX11_ABI=0
clang: warning: treating 'c' input as 'c++' when in C++ mode, this behavior is deprecated [-Wdeprecated]
clang: error: unsupported option '-fopenmp'
ninja: build stopped: subcommand failed.
Traceback (most recent call last):
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1509, in _run_ninja_build
    subprocess.run(
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/subprocess.py", line 512, in run
    raise CalledProcessError(retcode, process.args,
subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "setup.py", line 112, in <module>
    setup(
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/setuptools/__init__.py", line 165, in setup
    return distutils.core.setup(**attrs)
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/distutils/core.py", line 148, in setup
    dist.run_commands()
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/distutils/dist.py", line 966, in run_commands
    self.run_command(cmd)
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/distutils/dist.py", line 985, in run_command
    cmd_obj.run()
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 87, in run
    _build_ext.run(self)
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/distutils/command/build_ext.py", line 340, in run
    self.build_extensions()
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 649, in build_extensions
    build_ext.build_extensions(self)
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/distutils/command/build_ext.py", line 449, in build_extensions
    self._build_extensions_serial()
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/distutils/command/build_ext.py", line 474, in _build_extensions_serial
    self.build_extension(ext)
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 208, in build_extension
    _build_ext.build_extension(self, ext)
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/distutils/command/build_ext.py", line 528, in build_extension
    objects = self.compiler.compile(sources,
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 469, in unix_wrap_ninja_compile
    _write_ninja_file_and_compile_objects(
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1228, in _write_ninja_file_and_compile_objects
    _run_ninja_build(
  File "/Users/vanessamac/miniconda3/envs/torch/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1529, in _run_ninja_build
    raise RuntimeError(message)
RuntimeError: Error compiling objects for extension
EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2020-10-14 14:20:25

以下是一些提示:

  • 使用gcc,而不是llvm或clang进行无痛的开放-支持在macOS上。请注意,苹果默认的gcc只是苹果clang的别名,您将在gcc --version中看到这一点。你可以用自制软件安装真正的gcc:brew install gcc
  • 然后在同一个终端窗口内使用export CC='gcc-10' (最新版本应该是gcc 10.x)作为C编译器临时使用自制的gcc。
  • 没有必要设置CXXFLAGSCFLAGS。所需的标志由setup.py中的distutils/setuptools设置。
  • 您将无法在dmc_cuda_module 10.14.6上编译macOS。最新的macOS版本nvidia为其提供了10.13.6的cuda驱动程序。因此,您可能取消评论这部分的setup.py,并希望最好的,你不需要这个模块.
  • 在使用numpy C时,setup.py中的一些扩展不包括numpy头。在macOS上,有必要为每个扩展包括numpy头,请参阅这句话。因此,您必须将include_dirs=[numpy_include_dir]添加到这些扩展中。
  • 编辑:正如聊天中所讨论的:错误是由于conda忽略CC变量造成的。在通过自制软件安装python+pip和通过pip安装所需的python包之后,这个答案的步骤适用于OP。

总之,这里有一个对我有用的setup.py (macOS 10.5.7,gcc-10):

代码语言:javascript
运行
复制
try:
    from setuptools import setup
except ImportError:
    from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension
import numpy


# Get the numpy include directory.
numpy_include_dir = numpy.get_include()

# Extensions
# pykdtree (kd tree)
pykdtree = Extension(
    'im2mesh.utils.libkdtree.pykdtree.kdtree',
    sources=[
        'im2mesh/utils/libkdtree/pykdtree/kdtree.c',
        'im2mesh/utils/libkdtree/pykdtree/_kdtree_core.c'
    ],
    language='c',
    extra_compile_args=['-std=c99', '-O3', '-fopenmp'],
    extra_link_args=['-lgomp'],
    include_dirs=[numpy_include_dir]
)

# mcubes (marching cubes algorithm)
mcubes_module = Extension(
    'im2mesh.utils.libmcubes.mcubes',
    sources=[
        'im2mesh/utils/libmcubes/mcubes.pyx',
        'im2mesh/utils/libmcubes/pywrapper.cpp',
        'im2mesh/utils/libmcubes/marchingcubes.cpp'
    ],
    language='c++',
    extra_compile_args=['-std=c++11'],
    include_dirs=[numpy_include_dir]
)

# triangle hash (efficient mesh intersection)
triangle_hash_module = Extension(
    'im2mesh.utils.libmesh.triangle_hash',
    sources=[
        'im2mesh/utils/libmesh/triangle_hash.pyx'
    ],
    libraries=['m'],  # Unix-like specific
    include_dirs=[numpy_include_dir]
)

# mise (efficient mesh extraction)
mise_module = Extension(
    'im2mesh.utils.libmise.mise',
    sources=[
        'im2mesh/utils/libmise/mise.pyx'
    ],
)

# simplify (efficient mesh simplification)
simplify_mesh_module = Extension(
    'im2mesh.utils.libsimplify.simplify_mesh',
    sources=[
        'im2mesh/utils/libsimplify/simplify_mesh.pyx'
    ],
    include_dirs=[numpy_include_dir]
)

# voxelization (efficient mesh voxelization)
voxelize_module = Extension(
    'im2mesh.utils.libvoxelize.voxelize',
    sources=[
        'im2mesh/utils/libvoxelize/voxelize.pyx'
    ],
    libraries=['m']  # Unix-like specific
)

# DMC extensions
dmc_pred2mesh_module = CppExtension(
    'im2mesh.dmc.ops.cpp_modules.pred2mesh',
    sources=[
        'im2mesh/dmc/ops/cpp_modules/pred_to_mesh_.cpp',
    ]   
)

# dmc_cuda_module = CUDAExtension(
#     'im2mesh.dmc.ops._cuda_ext', 
#     sources=[
#         'im2mesh/dmc/ops/src/extension.cpp',
#         'im2mesh/dmc/ops/src/curvature_constraint_kernel.cu',
#         'im2mesh/dmc/ops/src/grid_pooling_kernel.cu',
#         'im2mesh/dmc/ops/src/occupancy_to_topology_kernel.cu',
#         'im2mesh/dmc/ops/src/occupancy_connectivity_kernel.cu',
#         'im2mesh/dmc/ops/src/point_triangle_distance_kernel.cu',
#     ]
# )

# Gather all extension modules
ext_modules = [
    pykdtree,
    mcubes_module,
    triangle_hash_module,
    mise_module,
    simplify_mesh_module,
    voxelize_module,
    dmc_pred2mesh_module,
    #dmc_cuda_module,
]

setup(
    ext_modules=cythonize(ext_modules),
    cmdclass={
        'build_ext': BuildExtension
    }
)
票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/64350106

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档