首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >在csv中生成平均值和标准差

在csv中生成平均值和标准差
EN

Stack Overflow用户
提问于 2020-08-01 21:03:53
回答 2查看 169关注 0票数 0

我想学习这个CSV,并做以下操作:

1-将数据分成60个元素块,其中每个新块移动10个元素。

例子:0到60,10到70,20到80 .等

2-然后将区块分成5部分(12x5 = 60)

3-计算各部分的平均值偏差

4-从每块60个元素中取下30个元素。

例如: 60至90,70至100,80至110 .等

5-计算0到100之间的读数,每20分组一次。

例子:0至20,20至40,40至60,60至80及80至100

(0-20) 12,18,11,14 =4 (20至40) 20 25 23=3 ..。

其结果将是这样的数据格式:

代码语言:javascript
运行
复制
mean 1 | standard deviation 1 | ... | mean 5 | standard deviation 5 | 0 to 20| 20 to 40 | ... | 80 to 100

我的代码执行这个过程,但是路径中有些地方失败了,从最后的输出336行返回我,但是根据我的数据,它应该是700行左右。另外,我想让这个代码更干净,来改进解释,有什么建议吗?

代码语言:javascript
运行
复制
def standardDeviation(data):
    """ Calculates standard deviation """
    
    return statistics.stdev(data)
       
def average(data):
    """ Calculates average """
    
    return statistics.mean(data)

def captureOcurrences(elements, n):
    """ Capture an X number of elements within a list """
    
    return [elements[i: i+n] for i in range(0, len(elements), n)]

def neuronsInput(elements):
    """ Generates input neuron modeling (5 averages, 5 standard deviations - Between 12 occurrences in a window of 60 readings) """
    
    result = []
    temp = []
    start = 0
    limit = 60
    size = int(len(elements))
    TargetDivision = int(size / 30)
    repetitions = 0
    five = 0

    while repetitions < TargetDivision:
        temp = []

        five += 1
        ocurrences = captureOcurrences(elements[start: limit],12)
        for i in ocurrences:
            m = average(i)
            sd = standardDeviation(i)
            temp.append([m,sd])

        result.append(temp)

        repetitions += 1
        limit += 10
        start += 10

    return result

def neuronsOutput(elements):
    """ Generates output neuron modeling (Histogram of the next 30 data readings) """
    
    result = []
    start = 61
    limit = 90
    size = int(len(elements))
    TargetDivision = int(size / 30)
    repetitions = 0

    while repetitions < TargetDivision:

        counter=collections.Counter(elements[start: limit])
        
        consumption0_20 = 0
        consumption20_40 = 0
        consumption40_60 = 0
        consumption60_80 = 0
        consumption80_100 = 0
        for key in counter:
            if key <= 20:
                consumption0_20 += int(counter[key])
            elif key > 20 and key < 40:
                consumption20_40 += int(counter[key])
            elif key > 40 and key < 60:
                consumption40_60 += int(counter[key])
            elif key > 60 and key < 80:
                consumption60_80 += int(counter[key])
            elif key > 80 and key < 100:
                consumption80_100 += int(counter[key])

        result.append([consumption0_20,consumption20_40,consumption40_60,consumption60_80,consumption80_100])

        repetitions += 1
        limit += 10
        start += 10

    return result

示例数据

代码语言:javascript
运行
复制
data = {0: {'data': '7/11/2020 0:00', '"cpu"': 27.6},
        1: {'data': '7/11/2020 0:01', '"cpu"': 0.7},
        2: {'data': '7/11/2020 0:02', '"cpu"': 1.0},
        3: {'data': '7/11/2020 0:03', '"cpu"': 2.7},
        4: {'data': '7/11/2020 0:04', '"cpu"': 0.9},
        5: {'data': '7/11/2020 0:05', '"cpu"': 4.2},
        6: {'data': '7/11/2020 0:06', '"cpu"': 1.1},
        7: {'data': '7/11/2020 0:07', '"cpu"': 0.6},
        8: {'data': '7/11/2020 0:08', '"cpu"': 3.0},
        9: {'data': '7/11/2020 0:09', '"cpu"': 0.8},
        10: {'data': '7/11/2020 0:10', '"cpu"': 3.7},
        11: {'data': '7/11/2020 0:11', '"cpu"': 13.2},
        12: {'data': '7/11/2020 0:12', '"cpu"': 1.3},
        13: {'data': '7/11/2020 0:13', '"cpu"': 2.9},
        14: {'data': '7/11/2020 0:14', '"cpu"': 11.7},
        15: {'data': '7/11/2020 0:15', '"cpu"': 9.2},
        16: {'data': '7/11/2020 0:16', '"cpu"': 1.1},
        17: {'data': '7/11/2020 0:17', '"cpu"': 0.7},
        18: {'data': '7/11/2020 0:18', '"cpu"': 4.1},
        19: {'data': '7/11/2020 0:19', '"cpu"': 0.7}}

df = pd.DataFrame.from_dict(data, orient='index')
EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2020-08-05 07:41:28

对于这样的操作,我更喜欢使用NumPy (这比在代码中使用for循环要快得多)。您可以简单地将NumPy用作:

代码语言:javascript
运行
复制
import numpy as np
import pandas as pd

#read the data
df = pd.read_csv('cpu-7day.csv')
data = df['"cpu"'].values

#task 1
blocks_data = []
for i in np.arange(0, int(data.shape[0]-50), 10):
    blocks_data.append(data[i:i+60])
blocks_data = np.array(blocks_data)

#task 2
parts_data = blocks_data.reshape(-1, 5, 12)

#task 3
mean_parts_data = np.mean(parts_data, axis = -1)
std_parts_data = np.std(parts_data, axis = -1, ddof = 1)

#task 4
next_data = []
for i in np.arange(60, int(data.shape[0]-20), 10):
    next_data.append(data[i:i+30])
next_data = np.array(next_data)

#task 5
count_groups = np.array([np.sum(((0<=next_data) & (next_data<20))*1, axis = -1),
                         np.sum(((20<=next_data) & (next_data<40))*1, axis = -1),
                         np.sum(((40<=next_data) & (next_data<60))*1, axis = -1),
                         np.sum(((60<=next_data) & (next_data<80))*1, axis = -1),
                         np.sum(((80<=next_data) & (next_data<100))*1, axis = -1)]).T

#collect all and merge in new dataframe
mean_std = np.append(mean_parts_data.reshape(-1, 1), std_parts_data.reshape(-1, 1), axis = -1).reshape(-1, 10)
pad_count_groups = np.pad(count_groups, (0, mean_std.shape[0]-count_groups.shape[0]))[:, :5]
res_data = np.append(mean_std, pad_count_groups, axis = 1)

columns = ['mean_1', 'std_1', 'mean_2', 'std_2', 'mean_3', 'std_3', 'mean_4', 'std_4', 'mean_5', 'std_5',
           '0_20', '20_40', '40_60', '60_80', '80_100']
myDF = pd.DataFrame(res_data, columns = columns)

#save this dataframe
myDF.to_csv('myDF.csv', index = False)
票数 1
EN

Stack Overflow用户

发布于 2020-08-01 22:56:33

将数据分成60个元素块,其中每个新块移动10个元素

您是否考虑过最后6个size60块长度的减少?

例如:

代码语言:javascript
运行
复制
#extract elements from testInputData & write to blocks [0,30),[10,40),[20,50)......
testInputData = list(range(0, 100))
data = [[]]
activeBlockIndexes=[]
i = 0
for row in testInputData:
    if i%10==0:
        activeBlockIndexes.append(int(i/10))
        data.append([])
    for b in activeBlockIndexes[-3:]:
        data[b].append(row)
    i+=1
for row in data:
    print('['+('{:>4d}'*len(row)).format(*row)+']')
代码语言:javascript
运行
复制
[   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29]
[  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39]
[  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49]
[  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59]
[  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69]
[  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79]
[  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89]
[  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99]
[  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99]
[  90  91  92  93  94  95  96  97  98  99]
票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/63210045

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档