我有下面的代码,我正在从使用C#的C++中翻译到它。
template <typename PointT> inline unsigned int
pcl::SamplingSurfaceNormal<PointT>::computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
Eigen::Matrix3f &covariance_matrix,
Eigen::Vector4f ¢roid)
{
// create the buffer on the stack which is much faster than using cloud.points[indices[i]] and centroid as a buffer
Eigen::Matrix<float, 1, 9, Eigen::RowMajor> accu = Eigen::Matrix<float, 1, 9, Eigen::RowMajor>::Zero ();
std::size_t point_count = 0;
for (std::size_t i = 0; i < cloud.points.size (); i++)
{
if (!isFinite (cloud[i]))
{
continue;
}
++point_count;
accu [0] += cloud[i].x * cloud[i].x;
accu [1] += cloud[i].x * cloud[i].y;
accu [2] += cloud[i].x * cloud[i].z;
accu [3] += cloud[i].y * cloud[i].y; // 4
accu [4] += cloud[i].y * cloud[i].z; // 5
accu [5] += cloud[i].z * cloud[i].z; // 8
accu [6] += cloud[i].x;
accu [7] += cloud[i].y;
accu [8] += cloud[i].z;
}
accu /= static_cast<float> (point_count);
centroid[0] = accu[6]; centroid[1] = accu[7]; centroid[2] = accu[8];
centroid[3] = 0;
covariance_matrix.coeffRef (0) = accu [0] - accu [6] * accu [6];
covariance_matrix.coeffRef (1) = accu [1] - accu [6] * accu [7];
covariance_matrix.coeffRef (2) = accu [2] - accu [6] * accu [8];
covariance_matrix.coeffRef (4) = accu [3] - accu [7] * accu [7];
covariance_matrix.coeffRef (5) = accu [4] - accu [7] * accu [8];
covariance_matrix.coeffRef (8) = accu [5] - accu [8] * accu [8];
covariance_matrix.coeffRef (3) = covariance_matrix.coeff (1);
covariance_matrix.coeffRef (6) = covariance_matrix.coeff (2);
covariance_matrix.coeffRef (7) = covariance_matrix.coeff (5);
return (static_cast<unsigned int> (point_count));
}
在本征文档中,我找不到在2D矩阵上调用someMatix3f.coeffRef(x)
或someMatrix3f.coeff(x)
意味着什么。这些操作员是做什么的?
注意,我已经看过文档(https://eigen.tuxfamily.org/dox/classEigen_1_1PlainObjectBase.html#a72e84dc1bb573ad8ecc9109fbbc1b63b),即使在数学上使用PhD,它对我也没有任何意义。
我尝试过使用MathNET.Numerics
进行翻译,这个方法是
private int ComputeMeanAndCovarianceMatrix(
PointCloud cloud,
Matrix<float> covariance_matrix,
MathNet.Numerics.LinearAlgebra.Vector<float> centroid)
{
int point_count = 0;
Matrix<float> accu = Matrix<float>.Build.DenseOfRowMajor(1, 9, Enumerable.Repeat(0.0f, 9));
for (int i = 0; i < cloud.Vertices.Length; ++i)
{
//if (!isFinite(cloud.Vertices[i].Point.))
//{
// continue;
//}
++point_count;
accu[0, 0] += cloud.Vertices[i].Point.X * cloud.Vertices[i].Point.X;
accu[0, 1] += cloud.Vertices[i].Point.X * cloud.Vertices[i].Point.Y;
accu[0, 2] += cloud.Vertices[i].Point.X * cloud.Vertices[i].Point.Z;
accu[0, 3] += cloud.Vertices[i].Point.Y * cloud.Vertices[i].Point.Y; // 4
accu[0, 4] += cloud.Vertices[i].Point.Y * cloud.Vertices[i].Point.Z; // 5
accu[0, 5] += cloud.Vertices[i].Point.Z * cloud.Vertices[i].Point.Z; // 8
accu[0, 6] += cloud.Vertices[i].Point.X;
accu[0, 7] += cloud.Vertices[i].Point.Y;
accu[0, 8] += cloud.Vertices[i].Point.Z;
}
accu /= point_count;
centroid[0] = accu[0, 6];
centroid[1] = accu[0, 7];
centroid[2] = accu[0, 8];
centroid[3] = 0;
covariance_matrix[0, 0] = accu[0, 0] - accu[0, 6] * accu[0, 6];
covariance_matrix[0, 1] = accu[0, 1] - accu[0, 6] * accu[0, 7];
covariance_matrix[0, 2] = accu[0, 2] - accu[0, 6] * accu[0, 8];
covariance_matrix[1, 1] = accu[0, 3] - accu[0, 7] * accu[0, 7];
covariance_matrix[1, 2] = accu[0, 4] - accu[0, 7] * accu[0, 8];
covariance_matrix[2, 2] = accu[0, 5] - accu[0, 8] * accu[0, 8];
covariance_matrix[1, 0] = covariance_matrix[0, 1];
covariance_matrix[2, 0] = covariance_matrix[0, 2];
covariance_matrix[2, 1] = covariance_matrix[1, 2];
return point_count;
}
看上去对吗?
发布于 2020-02-16 14:23:54
coeffRef
只提供对底层数据数组的访问。因此,您的翻译到covariance_matrix[i, j]
应该是等价的。注意,表达式covariance_matrix.coeffRef(k)
只是给出数据数组中的k
第四元素,与存储顺序无关。是的,使用coeffRef(i,j)
(国际海事组织)的原始代码会更有意义。
它会出现的原因(我猜在这里)。ggael和chtz可能能够确认/反驳),也就是说,特征使用大量的表达式模板来确定何时以及如何计算表达式的各个部分。有些依赖于矩阵的存储顺序,有些则不依赖于存储顺序(例如,标量*矩阵)能够“短路”,该表达式减少了编译器为决定如何计算给定表达式所必须执行的步骤的数量,从而减少了编译次数。如果我们显式地声明coeffRef
,那么我们告诉编译器,我们谈论的是一个具有存储的具体对象,而不是一个表达式。
https://stackoverflow.com/questions/60248458
复制相似问题