我希望在中创建一个截断的正态分布(即带有范围的高斯分布)。
我想要改变平均值,性病和范围。
对此有PyTorch方法吗?
发布于 2021-10-14 17:14:32
使用torch.nn.init.trunc_normal_
。
给出的这里描述
使用从截断正态分布中提取的值填充输入张量。这些值实际上是从正态分布:math:
\mathcal{N}(\text{mean}, \text{std}^2)
中提取出来的,外部的值可以重画:[a, b]
,直到它们在界限内。用于生成随机值的方法在以下情况下效果最好:数学:a \leq \text{mean} \leq b
。
发布于 2022-06-07 06:34:34
我知道最好的解决方案必须是torch.nn.init.trunc_normal_
。但问题是不能调用函数。我们可以通过复制src代码来创建这个功能。
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor: Tensor, mean: float = 0., std: float = 1., a: float = -2., b: float = 2.) -> Tensor:
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
https://stackoverflow.com/questions/60233216
复制相似问题