首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >使用权重文件脱机加载keras resnet50模型失败

使用权重文件脱机加载keras resnet50模型失败
EN

Stack Overflow用户
提问于 2020-02-07 18:18:51
回答 4查看 7.6K关注 0票数 3

我想离线训练keras预训练的resnet50模型,但是我无法加载模型。

当我设置weights='imagenet'时,它可以工作。它自动下载imagenet权重文件。

代码语言:javascript
运行
复制
from keras.applications.resnet import ResNet50
base_model = ResNet50(include_top=False, weights='resnet', input_shape=(w,h,3),pooling='avg')

但是,当我手动下载相同的权重文件并设置weights=resnet_weights_path时,它会抛出ValueError。

代码语言:javascript
运行
复制
(w,h) = 224,224
resnet_weights_path = '../input/resnet50/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
base_model = ResNet50(include_top=False, weights=resnet_weights_path, input_shape=(w,h,3),pooling='avg')

ValueError:形状(1,1,256,512)和(512,128,1,1)是不兼容的。

全面回溯:

代码语言:javascript
运行
复制
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-18-7683562fa2b9> in <module>
      1 resnet_weights_path = '../input/resnet50/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
      2 base_model = ResNet50(include_top=False, weights=resnet_weights_path,
----> 3                       pooling='avg')
      4 base_model.summary()

/opt/conda/lib/python3.6/site-packages/keras/applications/__init__.py in wrapper(*args, **kwargs)
     18         kwargs['models'] = models
     19         kwargs['utils'] = utils
---> 20         return base_fun(*args, **kwargs)
     21 
     22     return wrapper

/opt/conda/lib/python3.6/site-packages/keras/applications/resnet.py in ResNet50(*args, **kwargs)
     12 @keras_modules_injection
     13 def ResNet50(*args, **kwargs):
---> 14     return resnet.ResNet50(*args, **kwargs)
     15 
     16 

/opt/conda/lib/python3.6/site-packages/keras_applications/resnet_common.py in ResNet50(include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
    433                   input_tensor, input_shape,
    434                   pooling, classes,
--> 435                   **kwargs)
    436 
    437 

/opt/conda/lib/python3.6/site-packages/keras_applications/resnet_common.py in ResNet(stack_fn, preact, use_bias, model_name, include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
    411         model.load_weights(weights_path)
    412     elif weights is not None:
--> 413         model.load_weights(weights)
    414 
    415     return model

/opt/conda/lib/python3.6/site-packages/keras/engine/saving.py in load_wrapper(*args, **kwargs)
    490                 os.remove(tmp_filepath)
    491             return res
--> 492         return load_function(*args, **kwargs)
    493 
    494     return load_wrapper

/opt/conda/lib/python3.6/site-packages/keras/engine/network.py in load_weights(self, filepath, by_name, skip_mismatch, reshape)
   1228             else:
   1229                 saving.load_weights_from_hdf5_group(
-> 1230                     f, self.layers, reshape=reshape)
   1231             if hasattr(f, 'close'):
   1232                 f.close()

/opt/conda/lib/python3.6/site-packages/keras/engine/saving.py in load_weights_from_hdf5_group(f, layers, reshape)
   1235                              ' elements.')
   1236         weight_value_tuples += zip(symbolic_weights, weight_values)
-> 1237     K.batch_set_value(weight_value_tuples)
   1238 
   1239 

/opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in batch_set_value(tuples)
   2958             `value` should be a Numpy array.
   2959     """
-> 2960     tf_keras_backend.batch_set_value(tuples)
   2961 
   2962 

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/backend.py in batch_set_value(tuples)
   3321     with ops.init_scope():
   3322       for x, value in tuples:
-> 3323         x.assign(np.asarray(value, dtype=dtype(x)))
   3324   else:
   3325     with get_graph().as_default():

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/ops/resource_variable_ops.py in assign(self, value, use_locking, name, read_value)
    817     with _handle_graph(self.handle):
    818       value_tensor = ops.convert_to_tensor(value, dtype=self.dtype)
--> 819       self._shape.assert_is_compatible_with(value_tensor.shape)
    820       assign_op = gen_resource_variable_ops.assign_variable_op(
    821           self.handle, value_tensor, name=name)

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/framework/tensor_shape.py in assert_is_compatible_with(self, other)
   1108     """
   1109     if not self.is_compatible_with(other):
-> 1110       raise ValueError("Shapes %s and %s are incompatible" % (self, other))
   1111 
   1112   def most_specific_compatible_shape(self, other):

ValueError: Shapes (1, 1, 256, 512) and (512, 128, 1, 1) are incompatible
EN

回答 4

Stack Overflow用户

回答已采纳

发布于 2020-02-09 11:27:32

这一问题可能是由于keras版本造成的。我使用的当前keras版本是2.3.1

要解决问题,请执行以下操作:

  1. 使用选项weights='imagenet'运行代码。它下载权重文件automatically.
  2. Provide到下载的权重文件的路径.
票数 6
EN

Stack Overflow用户

发布于 2020-02-08 09:27:51

它们是一种形状不匹配,由于矢量形状不匹配会引起问题,因此根据权重改变结构是无法解决的。

从这里下载权重,然后再试一次。这些是角角本身给出的权重。

代码语言:javascript
运行
复制
WEIGHTS_PATH = ('https://github.com/fchollet/deep-learning-models/'
                'releases/download/v0.2/'
                'resnet50_weights_tf_dim_ordering_tf_kernels.h5')
WEIGHTS_PATH_NO_TOP = ('https://github.com/fchollet/deep-learning-models/'
                       'releases/download/v0.2/'
                       'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5')
票数 1
EN

Stack Overflow用户

发布于 2021-03-17 17:18:48

对于加载Resnet50以供脱机使用的简单解决方案,可以尝试通过设置参数weights ='imagenet'自动加载权重。

代码语言:javascript
运行
复制
from keras.applications.resnet import ResNet50

base_model = ResNet50(include_top=False, weights='imagenet', input_shape=(w,h,3), pooling='avg')

使用

代码语言:javascript
运行
复制
base_model.save("model_name.h5")

然后,可以将其脱机加载为模型(体系结构+权重)。

代码语言:javascript
运行
复制
from tensorflow.keras.models import load_model
resnet = load_model('model_name.h5')
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/60119041

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档