我有以下代码片段,并试图理解BertWordPieceTokenizer和BertTokenizer之间的区别。
BertWordPieceTokenizer (锈基)
from tokenizers import BertWordPieceTokenizer
sequence = "Hello, y'all! How are you Tokenizer ?"
tokenizer = BertWordPieceTokenizer("bert-base-uncased-vocab.txt")
tokenized_sequence = tokenizer.encode(sequence)
print(tokenized_sequence)
>>>Encoding(num_tokens=15, attributes=[ids, type_ids, tokens, offsets, attention_mask, special_tokens_mask, overflowing])
print(tokenized_sequence.tokens)
>>>['[CLS]', 'hello', ',', 'y', "'", 'all', '!', 'how', 'are', 'you', 'token', '##izer', '[UNK]', '?', '[SEP]']
BertTokenizer
from transformers import BertTokenizer
tokenizer = BertTokenizer("bert-base-cased-vocab.txt")
tokenized_sequence = tokenizer.encode(sequence)
print(tokenized_sequence)
#Output: [19082, 117, 194, 112, 1155, 106, 1293, 1132, 1128, 22559, 17260, 100, 136]
谢谢
发布于 2020-06-16 12:44:41
当您使用相同的词汇表时,它们应该产生相同的输出(在您的示例中,您使用了bert-base-uncated-voab.txt和bert-base-cased voab.txt)。主要区别在于,来自令牌器包的令牌器比来自变压器的令牌器更快,因为它们是在Rust中实现的。
当您修改示例时,您将看到它们生成相同的ids
和其他属性(编码对象),而转换器标记器只生成了ids
的列表。
from tokenizers import BertWordPieceTokenizer
sequence = "Hello, y'all! How are you Tokenizer ?"
tokenizerBW = BertWordPieceTokenizer("/content/bert-base-uncased-vocab.txt")
tokenized_sequenceBW = tokenizerBW.encode(sequence)
print(tokenized_sequenceBW)
print(type(tokenized_sequenceBW))
print(tokenized_sequenceBW.ids)
输出:
Encoding(num_tokens=15, attributes=[ids, type_ids, tokens, offsets, attention_mask, special_tokens_mask, overflowing])
<class 'Encoding'>
[101, 7592, 1010, 1061, 1005, 2035, 999, 2129, 2024, 2017, 19204, 17629, 100, 1029, 102]
from transformers import BertTokenizer
tokenizerBT = BertTokenizer("/content/bert-base-uncased-vocab.txt")
tokenized_sequenceBT = tokenizerBT.encode(sequence)
print(tokenized_sequenceBT)
print(type(tokenized_sequenceBT))
输出:
[101, 7592, 1010, 1061, 1005, 2035, 999, 2129, 2024, 2017, 19204, 17629, 100, 1029, 102]
<class 'list'>
您在评论中提到,您的问题更多地是关于产生的输出为何不同。据我所知,这是开发人员做出的设计决定,没有具体的原因。也不是令牌器的令牌器代替变压器的BertTokenizer的情况。他们仍然使用包装器使其与变压器令牌程序API兼容。有一个BertTokenizerFast类,它有一个“清理”方法编码,以使BertWordPieceTokenizer完全兼容。因此,您必须将上面的BertTokenizer示例与以下内容进行比较:
from transformers import BertTokenizerFast
sequence = "Hello, y'all! How are you Tokenizer ?"
tokenizerBW = BertTokenizerFast.from_pretrained("bert-base-uncased")
tokenized_sequenceBW = tokenizerBW.encode(sequence)
print(tokenized_sequenceBW)
print(type(tokenized_sequenceBW))
输出:
[101, 7592, 1010, 1061, 1005, 2035, 999, 2129, 2024, 2017, 19204, 17629, 100, 1029, 102]
<class 'list'>
https://stackoverflow.com/questions/62405155
复制相似问题