我使用Functional创建了一个具有三个不同输出层的模型,以测试不同的激活函数。问题是每个时代的输出线都太长了。我只想看看准确性,而不是损失。
Epoch 1/5
1875/1875 - 4s - loss: 3.7070 - Sigmoid_loss: 1.1836 - Softmax_loss: 1.2291 - Softplus_loss: 1.2943 - Sigmoid_accuracy: 0.9021 - Softmax_accuracy: 0.9020 - Softplus_accuracy: 0.5787我不希望.fit()函数打印每一层的损失,只打印精度。我搜索了所有的Google和Tensorflow文档,但却找不到怎么做。
如果您想要完整的代码,请在这篇文章上发表评论。我马上寄过来。
下面是模型的总结:
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
InputLayer (InputLayer) [(32, 784)] 0
__________________________________________________________________________________________________
FirstHidden (Dense) (32, 512) 401920 InputLayer[0][0]
__________________________________________________________________________________________________
SecondHidden (Dense) (32, 256) 131328 FirstHidden[0][0]
__________________________________________________________________________________________________
Sigmoid (Dense) (32, 10) 2570 SecondHidden[0][0]
__________________________________________________________________________________________________
Softmax (Dense) (32, 10) 2570 SecondHidden[0][0]
__________________________________________________________________________________________________
Softplus (Dense) (32, 10) 2570 SecondHidden[0][0]
==================================================================================================
Total params: 540,958
Trainable params: 540,958
Non-trainable params: 0
__________________________________________________________________________________________________
None谢谢你,祝你今天过得愉快。
发布于 2021-01-14 04:22:45
这是我自定义回调的机会。注意,我假设Sigmoid_accuracy、Softmax_accuracy和Softplus_accuracy以前被定义为model.compile中的度量标准。以下是自定义回调的代码
class Print_Acc(keras.callbacks.Callback):
def __init__(self):
super(Print_Acc, self).__init__()
def on_epoch_end(self, epoch, logs=None): # method runs on the end of each epoch
sig_acc=logs.get('Sigmoid_accuracy')
softmax_acc =logs.get('Softmax_accuracy')
softplus_acc =logs.get('Softplus_accuracy')
print('For epoch ',epoch, ' sig acc= ', sig_acc, ' softmac acc= ', softmax_acc, ' softplus acc= ', softplus_acc)在model.fit中包括callbacks=Print_Acc
https://stackoverflow.com/questions/65713017
复制相似问题