我是这个领域的初学者,我被困住了。我遵循本教程(https://towardsdatascience.com/multi-label-multi-class-text-classification-with-bert-transformer-and-keras-c6355eccb63a)构建一个多标签分类使用拥抱脸转换器。
下面是我用来训练我的模型的代码。
# Name of the BERT model to use
model_name = 'bert-base-uncased'
# Max length of tokens
max_length = 100
PATH = 'uncased_L-12_H-768_A-12/'
# Load transformers config and set output_hidden_states to False
config = BertConfig.from_pretrained(PATH)
config.output_hidden_states = False
# Load BERT tokenizer
tokenizer = BertTokenizerFast.from_pretrained(PATH, local_files_only=True, config = config)
# tokenizer = BertTokenizer.from_pretrained(PATH, local_files_only=True, config = config)
# Load the Transformers BERT model
transformer_model = TFBertModel.from_pretrained(PATH, config = config,from_pt=True)
#######################################
### ------- Build the model ------- ###
# Load the MainLayer
bert = transformer_model.layers[0]
# Build your model input
input_ids = Input(shape=(None,), name='input_ids', dtype='int32')
# attention_mask = Input(shape=(max_length,), name='attention_mask', dtype='int32') 
# inputs = {'input_ids': input_ids, 'attention_mask': attention_mask}
inputs = {'input_ids': input_ids}
# Load the Transformers BERT model as a layer in a Keras model
bert_model = bert(inputs)[1]
dropout = Dropout(config.hidden_dropout_prob, name='pooled_output')
pooled_output = dropout(bert_model, training=False)
# Then build your model output
issue = Dense(units=len(data.U_label.value_counts()), kernel_initializer=TruncatedNormal(stddev=config.initializer_range), name='issue')(pooled_output)
outputs = {'issue': issue}
# And combine it all in a model object
model = Model(inputs=inputs, outputs=outputs, name='BERT_MultiLabel_MultiClass')
# Take a look at the model
model.summary()
#######################################
### ------- Train the model ------- ###
# Set an optimizer
optimizer = Adam(
    learning_rate=5e-05,
    epsilon=1e-08,
    decay=0.01,
    clipnorm=1.0)
# Set loss and metrics
loss = {'issue': CategoricalCrossentropy(from_logits = True)}
# loss = {'issue': CategoricalCrossentropy()}
metric = {'issue': CategoricalAccuracy('accuracy')}
# Compile the model
model.compile(
    optimizer = optimizer,
    loss = loss, 
    metrics = metric)
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(data['U_H_Label'])
# Ready output data for the model
y_issue = to_categorical(le.transform(data['U_H_Label']))
# Tokenize the input (takes some time)
x = tokenizer(
    text=data['Input_Data'].to_list(),
    add_special_tokens=True,
    max_length=max_length,
    truncation=True,
    padding=True, 
    return_tensors='tf',
    return_token_type_ids = False,
    return_attention_mask = True,
    verbose = True)
# Fit the model
history = model.fit(
    # x={'input_ids': x['input_ids'], 'attention_mask': x['attention_mask']},
    x={'input_ids': x['input_ids']},
    y={'issue': y_issue},
    validation_split=0.2,
    batch_size=64,
    epochs=10)当我使用model.predict()函数时,我认为我得到了每个类的logit分数,并希望将它们转换为0到1之间的概率分数。
我在多个博客上读到,softmax函数是我必须使用的,但是我无法联系到它的位置和方式。如果有人能告诉我所需的代码行,我将不胜感激!
发布于 2022-05-06 12:06:30
一旦从model.predict()获得logit分数,就可以这样做:
from torch.nn import functional as F
import torch
# convert logit score to torch array
torch_logits = torch.from_numpy(logit_score)
# get probabilities using softmax from logit score and convert it to numpy array
probabilities_scores = F.softmax(torch_logits, dim = -1).numpy()[0]https://stackoverflow.com/questions/65918679
复制相似问题