首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >DataFrame -用分组列(至少两列)绘制数据帧的条形图

DataFrame -用分组列(至少两列)绘制数据帧的条形图
EN

Stack Overflow用户
提问于 2021-02-02 19:05:26
回答 3查看 1.3K关注 0票数 4

我一直在努力使用matlplotlib在python中重新创建这个Excel图:

数据在一个dataframe中;我正在尝试自动化生成这个图的过程。

我尝试过打开我的数据堆栈,进行细分,但是我还没有创建"Zone“索引,这个索引在Excel中是如此优雅。我已经成功地绘制了没有这个“区域”索引的图表,但这并不是我真正想要做的。

这是我的代码:

代码语言:javascript
复制
data = pd.DataFrame(
    {
        'Factory Zone':
        ["AMERICAS","APAC","APAC","APAC","APAC","APAC","EMEA","EMEA","EMEA","EMEA"],
        'Factory Name':
        ["Chocolate Factory","Crayon Factory","Jobs Ur Us", "Gibberish US","Lil Grey", "Toys R Us","Food Inc.",
        "Pet Shop", "Bonbon Factory","Carrefour"],
        'Production Day 1':
        [24,1,9,29,92,79,4,90,42,35],
        'Production Day 2':
        [2,43,17,5,31,89,44,49,34,84]
    })
df = pd.DataFrame(data)
print(df)
# Without FactoryZone, it works:
df = df.drop(['Factory Zone'], axis=1)
image = df.plot(kind="bar")

数据看起来如下:

代码语言:javascript
复制
  Unnamed: 0 FactoryZone       Factory Name  Production Day 1  Production Day 2
0           1    AMERICAS  Chocolate Factory                24                43
1           2    AMERICAS     Crayon Factory                 1                17
2           3        EMEA           Pet Shop                 9                 5
3           4        EMEA     Bonbon Factory                29                31
4           5        APAC           Lil Grey                92                89
5           6    AMERICAS         Jobs Ur Us                79                44
6           7        APAC          Toys R Us                 4                49
7           8        EMEA          Carrefour                90                34
8           9    AMERICAS       Gibberish US                42                84
9          10        APAC          Food Inc.                35                62
EN

回答 3

Stack Overflow用户

回答已采纳

发布于 2021-02-09 14:50:39

您可以首先为分层数据集创建一个MultiIndex,其中0级是工厂区域,级别1是工厂名称

代码语言:javascript
复制
import numpy as np                 # v 1.19.2
import pandas as pd                # v 1.1.3
import matplotlib.pyplot as plt    # v 3.3.2

df = pd.DataFrame(
    {'Factory Zone': ['AMERICAS', 'AMERICAS', 'AMERICAS', 'AMERICAS', 'APAC',
                      'APAC', 'APAC', 'EMEA', 'EMEA', 'EMEA'],
     'Factory Name': ['Chocolate Factory', 'Crayon Factory', 'Jobs Ur Us',
                      'Gibberish US', 'Lil Grey', 'Toys R Us', 'Food Inc.',
                      'Pet Shop', 'Bonbon Factory','Carrefour'],
     'Production Day 1': [24,1,9,29,92,79,4,90,42,35],
     'Production Day 2': [2,43,17,5,31,89,44,49,34,84]
    })

df.set_index(['Factory Zone', 'Factory Name'], inplace=True)
代码语言:javascript
复制
df

#                                   Production Day 1  Production Day 2
#  Factory Zone       Factory Name      
#      AMERICAS  Chocolate Factory                24                 2
#                   Crayon Factory                 1                43
#                       Jobs Ur Us                 9                17
#                     Gibberish US                29                 5
#          APAC           Lil Grey                92                31
#                        Toys R Us                79                89
#                        Food Inc.                 4                44
#         EMEA            Pet Shop                90                49
#                   Bonbon Factory                42                34
#                        Carrefour                35                84

就像广黄提议的那样,你可以为每个区域创建一个子小区,并将它们粘在一起。每个子图的宽度必须通过使用width_ratios字典中的gridspec_kw参数来根据工厂的数量进行校正,这样所有的列都具有相同的宽度。然后有无限的格式选择要做。

在下面的示例中,我选择只显示区域之间的分隔线,并为此使用较小的勾号。此外,由于图形宽度在这里仅限于10英寸,我在两行上重写了较长的标签。

代码语言:javascript
复制
# Create figure with a subplot for each factory zone with a relative width
# proportionate to the number of factories
zones = df.index.levels[0]
nplots = zones.size
plots_width_ratios = [df.xs(zone).index.size for zone in zones]
fig, axes = plt.subplots(nrows=1, ncols=nplots, sharey=True, figsize=(10, 4),
                         gridspec_kw = dict(width_ratios=plots_width_ratios, wspace=0))

# Loop through array of axes to create grouped bar chart for each factory zone
alpha = 0.3 # used for grid lines, bottom spine and separation lines between zones
for zone, ax in zip(zones, axes):
    # Create bar chart with grid lines and no spines except bottom one
    df.xs(zone).plot.bar(ax=ax, legend=None, zorder=2)
    ax.grid(axis='y', zorder=1, color='black', alpha=alpha)
    for spine in ['top', 'left', 'right']:
        ax.spines[spine].set_visible(False)
    ax.spines['bottom'].set_alpha(alpha)
    
    # Set and place x labels for factory zones
    ax.set_xlabel(zone)
    ax.xaxis.set_label_coords(x=0.5, y=-0.2)
    
    # Format major tick labels for factory names: note that because this figure is
    # only about 10 inches wide, I choose to rewrite the long names on two lines.
    ticklabels = [name.replace(' ', '\n') if len(name) > 10 else name
                  for name in df.xs(zone).index]
    ax.set_xticklabels(ticklabels, rotation=0, ha='center')
    ax.tick_params(axis='both', length=0, pad=7)
    
    # Set and format minor tick marks for separation lines between zones: note
    # that except for the first subplot, only the right tick mark is drawn to avoid
    # duplicate overlapping lines so that when an alpha different from 1 is chosen
    # (like in this example) all the lines look the same
    if ax.is_first_col():
        ax.set_xticks([*ax.get_xlim()], minor=True)
    else:
        ax.set_xticks([ax.get_xlim()[1]], minor=True)
    ax.tick_params(which='minor', length=55, width=0.8, color=[0, 0, 0, alpha])

# Add legend using the labels and handles from the last subplot
fig.legend(*ax.get_legend_handles_labels(), frameon=False, loc=(0.08, 0.77))

fig.suptitle('Production Quantity by Zone and Factory on both days', y=1.02, size=14);

参考文献: Quang,这是gyx的答案。的答案

票数 6
EN

Stack Overflow用户

发布于 2021-02-02 19:25:43

给出一个紧密的情节的一个想法是在一个子图中将每个Factory Zone绘制成一个彼此相邻的子图:

代码语言:javascript
复制
# setting up the subplots
fig, axes = plt.subplots(1, len(df['Factory Zone'].unique()), 
                         figsize=(12,4),
                         sharex=True, sharey=True, 
                         gridspec_kw={'wspace':0},
                         subplot_kw={'frameon':False})

# use groupby to loop through the `Factory Zone`
for (k,d), ax in zip(df.groupby('Factory Zone'), axes):

    # plot the data into subplot
    d.plot.bar(x='Factory Name', ax=ax)
    
    # set label to the `Factory Zone`
    ax.set_xlabel(k)
    
    # remove the extra legend in each subplot
    legend = ax.legend()
    handlers = ax.get_legend_handles_labels()
    ax.legend().remove()
    ax.grid(True, axis='y')

# reinstall the last legend
ax.legend(*handlers)

输出:

票数 1
EN

Stack Overflow用户

发布于 2022-06-23 19:21:20

Patrick提供的解决方案只有一行,它在Matplotlib 3.4中被废弃,并将在2个小版本中被删除。(我认为这是一种评论,而不是回答,但我还没有足够的声誉!)

更改:

代码语言:javascript
复制
if ax.is_first_col():

代码语言:javascript
复制
if ax.get_subplotspec().is_first_col():
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/66016045

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档