我希望使用EfficientNet Lite 0模型作为主干来执行keypoint回归任务。但是,我不得不从Tensorflow集线器或官方的GitHub存储库加载模型。请你解释一下我怎么能:
我期待着应用高效的Lite,因为我想把所有的东西转换成TF Lite。
发布于 2021-04-07 22:23:16
TensorFlow Lite目前不支持EfficientNet Lite,但它们确实支持移动(CPU & GPU)友好的CenterNet。请参阅演示如何使用此模型的这个科拉布。
转换键点模型的命令:
# Get mobile-friendly CenterNet for Keypoint detection task.
# See TensorFlow 2 Detection Model Zoo for more details:
# https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
wget http://download.tensorflow.org/models/object_detection/tf2/20210210/centernet_mobilenetv2fpn_512x512_coco17_kpts.tar.gz
tar -xf centernet_mobilenetv2fpn_512x512_coco17_kpts.tar.gz
rm centernet_mobilenetv2fpn_512x512_coco17_kpts.tar.gz*
# Export the intermediate SavedModel that outputs 10 detections & takes in an
# image of dim 320x320.
# Modify these parameters according to your needs.
python models/research/object_detection/export_tflite_graph_tf2.py \
--pipeline_config_path=centernet_mobilenetv2_fpn_kpts/pipeline.config \
--trained_checkpoint_dir=centernet_mobilenetv2_fpn_kpts/checkpoint \
--output_directory=centernet_mobilenetv2_fpn_kpts/tflite \
--centernet_include_keypoints=true \
--keypoint_label_map_path=centernet_mobilenetv2_fpn_kpts/label_map.txt \
--max_detections=10 \
--config_override=" \
model{ \
center_net { \
image_resizer { \
fixed_shape_resizer { \
height: 320 \
width: 320 \
} \
} \
} \
}"
tflite_convert --output_file=centernet_mobilenetv2_fpn_kpts/model.tflite \
--saved_model_dir=centernet_mobilenetv2_fpn_kpts/tflite/saved_model
https://stackoverflow.com/questions/66981139
复制相似问题