这是一个问题,立体声校准和纠正使用openCV (vers )。4.5.1.48)和Python (vers.3.8.5)。
我有两个相机放在同一个轴上,如下图所示:
左(上)摄像机以640x480分辨率拍照,而右(下)相机拍摄320x240分辨率的照片。目标是在右侧图像(320x240)上找到一个对象,并在左侧图像(640x480)上裁剪出相同的对象。换句话说,将构成右侧图像中的对象的矩形传输到左侧图像。下面是这个想法的草图。
在右边的图像上找到了一个红色的物体,我需要把它的位置转移到左边的图像上,然后把它裁剪出来。物体被放置在距相机镜头30厘米的平面上。换句话说,从两个镜头到平面的距离(深度)是恒定的(30厘米)。
这个主要问题是如何将一个位置从一个图像转移到另一个图像,当两个摄像机并排放置时,当图像具有不同的分辨率,何时深度是(相当)恒定的。这不是一个寻找物体的问题。
为了解决这个问题,据我所知,必须使用立体声校准,除其他外,我发现了以下文章/代码:
下面是我使用的校准模式的一个示例:
我有25张照片的校准模式与左和右相机。图案为5x9,方形尺寸为40×40 mm。
据我所知,我编写了以下代码:
import numpy as np
import cv2
import glob
CALIL = "path-to-left-images"
CALIR = "path-to-right-images"
# Termination criterias
criteria1 = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
criteria2 = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-5)
# Chessboard parameters
checker_size = 40.0 # Square size in world units (mm)
checker_pattern = (5, 9) # 5 rows, 9 columns
# Flags
findChessboardCorners_flags = 0
#findChessboardCorners_flags |= cv2.CALIB_CB_ADAPTIVE_THRESH
#findChessboardCorners_flags |= cv2.CALIB_CB_NORMALIZE_IMAGE
#findChessboardCorners_flags |= cv2.CALIB_CB_FILTER_QUADS
#findChessboardCorners_flags |= cv2.CALIB_CB_FAST_CHECK
calibrateCamera_flags = 0
#calibrateCamera_flags |= cv2.CALIB_USE_INTRINSIC_GUESS
#calibrateCamera_flags |= cv2.CALIB_FIX_PRINCIPAL_POINT
#calibrateCamera_flags |= cv2.CALIB_FIX_ASPECT_RATIO
#calibrateCamera_flags |= cv2.CALIB_ZERO_TANGENT_DIST
#calibrateCamera_flags |= cv2.CALIB_FIX_K1 # K2, K3...K6
#calibrateCamera_flags |= cv2.CALIB_RATIONAL_MODEL
#calibrateCamera_flags |= cv2.CALIB_THIN_PRISM_MODEL
#calibrateCamera_flags |= cv2.CALIB_FIX_S1_S2_S3_S4
#calibrateCamera_flags |= cv2.CALIB_TILTED_MODEL
#calibrateCamera_flags |= cv2.CALIB_FIX_TAUX_TAUY
stereoCalibrate_falgs = 0
stereoCalibrate_falgs |= cv2.CALIB_FIX_INTRINSIC
#stereoCalibrate_falgs |= cv2.CALIB_USE_INTRINSIC_GUESS
#stereoCalibrate_falgs |= cv2.CALIB_USE_EXTRINSIC_GUESS
#stereoCalibrate_falgs |= cv2.CALIB_FIX_PRINCIPAL_POINT
#stereoCalibrate_falgs |= cv2.CALIB_FIX_FOCAL_LENGTH
#stereoCalibrate_falgs |= cv2.CALIB_FIX_ASPECT_RATIO
#stereoCalibrate_falgs |= cv2.CALIB_SAME_FOCAL_LENGTH
#stereoCalibrate_falgs |= cv2.CALIB_ZERO_TANGENT_DIST
#stereoCalibrate_falgs |= cv2.CALIB_FIX_K1 # K2, K3...K6
#stereoCalibrate_falgs |= cv2.CALIB_RATIONAL_MODEL
#stereoCalibrate_falgs |= cv2.CALIB_THIN_PRISM_MODEL
#stereoCalibrate_falgs |= cv2.CALIB_FIX_S1_S2_S3_S4
#stereoCalibrate_falgs |= cv2.CALIB_TILTED_MODEL
#stereoCalibrate_falgs |= cv2.CALIB_FIX_TAUX_TAUY
stereoRectify_flags = 0
stereoRectify_flags |= cv2.CALIB_ZERO_DISPARITY
# Prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((1, checker_pattern[0] * checker_pattern[1], 3), np.float32)
objp[0, :, :2] = np.mgrid[0:checker_pattern[0],
0:checker_pattern[1]].T.reshape(-1, 2)*checker_size
# Arrays to store object points and image points from all the images.
objPoints = [] # 3d point in real world space
imgPointsL = [] # 2d points in image plane, left image (normal)
imgPointsR = [] # 2d points in image plane, right image (thermal)
# Get calibration images
# Get all left (normal) images from directory. Sort them
images_left = glob.glob(CALIL+'*')
images_left.sort()
# Get all right (thermal) images from directory. Sort them
images_right = glob.glob(CALIR+'*')
images_right.sort()
for left_img, right_img in zip(images_left, images_right):
# Left object points
imgL = cv2.imread(left_img)
grayL = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
retL, cornersL = cv2.findChessboardCorners(
grayL, (checker_pattern[0], checker_pattern[1]), findChessboardCorners_flags)
# Right object points
imgR = cv2.imread(right_img)
grayR = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
retR, cornersR = cv2.findChessboardCorners(
grayR, (checker_pattern[0], checker_pattern[1]), findChessboardCorners_flags)
if retL and retR:
# If found, add object points, image points (after refining them)
objPoints.append(objp)
# Left points
cornersL2 = cv2.cornerSubPix(
grayL, cornersL, (5, 5), (-1, -1), criteria1)
imgPointsL.append(cornersL2)
# Right points
cornersR2 = cv2.cornerSubPix(
grayR, cornersR, (5, 5), (-1, -1), criteria1)
imgPointsR.append(cornersR2)
shapeL = grayL.shape[::-1]
shapeR = grayR.shape[::-1]
# Calibrate each camera separately
retL, K1, D1, R1, T1 = cv2.calibrateCamera(
objPoints, imgPointsL, shapeL, None, None, flags=calibrateCamera_flags)
retR, K2, D2, R2, T2 = cv2.calibrateCamera(
objPoints, imgPointsR, shapeR, None, None, flags=calibrateCamera_flags)
# Stereo calibrate
ret, K1, D1, K2, D2, R, T, E, F = cv2.stereoCalibrate(
objPoints, imgPointsL, imgPointsR, K1, D1, K2, D2, shapeR, flags=calibrateCamera_flags, criteria=criteria2)
# Stereo rectify
R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(
K1, D1, K2, D2, shapeR, R, T, flags=stereoRectify_flags, alpha=1)
# Undistort images
leftMapX, leftMapY = cv2.initUndistortRectifyMap(
K1, D1, R1, P1, shapeL, cv2.CV_32FC1)
rightMapX, rightMapY = cv2.initUndistortRectifyMap(
K2, D2, R2, P2, shapeR, cv2.CV_32FC1)
# Remap
left_rectified = cv2.remap(images_left[0], leftMapX, leftMapY,
cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)
right_rectified = cv2.remap(images_right[0], rightMapX, rightMapY,
cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)
但我得到了一个不好的结果:
我试过不同的旗子,α参数,但是什么都不管用.
问题:
如果两幅图像的resolutions?
编辑
在米查的评论之后,我发现透视同调是(希望)解决这个问题的方法,而不是立体声校准。这是因为需要找到的物体是从两个照相机镜头(30厘米)处放置在一个固定长度/深度的平面上的。
基于新的信息,我编写了以下代码,其中使用了第一对图像来获取透视图转换矩阵:
imgL = cv2.imread(images_left[0])
imgL = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)
imgR = cv2.imread(images_right[0])
imgR = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)
ret1, corners1 = cv2.findChessboardCorners(imgL, (checker_pattern[0], checker_pattern[1]))
cornersL2 = cv2.cornerSubPix(imgL, corners1, (5, 5), (-1, -1), criteria1)
ret2, corners2 = cv2.findChessboardCorners(imgR, (checker_pattern[0], checker_pattern[1]))
cornersR2 = cv2.cornerSubPix(imgR, corners2, (5, 5), (-1, -1), criteria1)
H, _ = cv2.findHomography(cornersL2, cornersR2)
在透视变换矩阵H的基础上,利用cv2.warpPerspective()
函数对标定板中的右侧图像和棋盘角进行左图像的翘曲。
但是,当我试图将其扭曲时,扭曲的图像(下面的上图像)相对于另一个(下)图像稍微偏右,如下面的图像所示:
裁剪结果如下所示,其中的区域不匹配:
我认为我需要调整扭曲图像的大小,使其与正确的图像(320x240)的分辨率相同。扭曲后的图像分辨率为640x240。
问题:
cv2.warpPerspective()
函数,但是结果并不匹配。我应该使用其他函数吗?发布于 2021-04-26 19:02:31
我使用以下openCV函数解决了这个问题:
cv2.findChessboardCorners()
cv2.cornerSubPix()
cv2.findHomography()
cv2.warpPerspective()
我使用距离为30厘米的标定板计算透视变换矩阵,H。因此,我可以将一个物体从右边的图像映射到左边的图像。深度必须是恒定的(30厘米),这有点问题,但在我的情况下是可以接受的。
感谢@Micka给出的好答案。
https://stackoverflow.com/questions/67226475
复制相似问题