我有一个包含输入数据的两列数据。第一列是开始日期,第二列称为持续时间(分钟)。您可以想到一台从开始运行到start+duration的机器。我想使用这些信息构建一个长度为8760*60的一维数组,其中包含一年中所有的分钟,机器运行的地方应该有一个1,否则为零。下面的MWE完成了这个任务,但是由于for-循环比较慢,我不知道如何将它向量化。
import pandas as pd
import numpy as np
# Start and end of time horizon
start = pd.Timestamp(year=2019, month=1, day=1, hour=0, tz='UTC')
end = pd.Timestamp(year=2019, month=12, day=31, hour=23, minute=59, tz='UTC')
# DataFrame of time horizon
dates = pd.DataFrame(pd.date_range(start, end, freq='min'))
# Starting points
t1 = pd.Timestamp(year=2019, month=1, day=2, hour=0, tz='UTC')
t2 = pd.Timestamp(year=2019, month=1, day=1, hour=0, minute=3, tz='UTC')
# Durations
d1 = 5
d2 = 30
# DataFrame from input data
data = pd.DataFrame(
    data=[
        [t1, d1],
        [t2, d2],
        ],
    columns=[
        'start',
        'duration',
        ]
    )
# Array to be filled
on = np.zeros(8760*60)
# loop over data rows 
for idx in data.index:
    # Start for on array from dates 
    start = dates[dates[0] == data.loc[idx, 'start']].index[0]
    
    # Duration from data
    duration = data.loc[idx, 'duration']
    # Put 1s in the on array from start to start+duration
    on[start: start+duration] = 1发布于 2021-07-26 10:35:12
这对你有用吗?
idx = pd.date_range(pd.Timestamp('2019-01-01', tz='UTC'),
                    pd.Timestamp('2019-12-31', tz='UTC'),
                    freq='1min')
df = pd.DataFrame({'on': 0}, index=idx)
def to_mins(row):
    return set(pd.date_range(row['start'], periods=row['duration'], freq='1min'))
idx_on = set().union(*data[['start', 'duration']].apply(to_mins, axis='columns'))
df.loc[idx_on] = 1
on = df.on.values如果持续时间可能导致2019年以外的时间戳,您可以使用:
def to_min_range(row):
    return set(
        m 
        for m in pd.date_range(row['start'], periods=row['duration'], freq='1min')
        if m.year == 2019
    )https://stackoverflow.com/questions/68526220
复制相似问题