首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >Python - sklearn LDA获得意外的关键字参数'covariance_estimator‘

Python - sklearn LDA获得意外的关键字参数'covariance_estimator‘
EN

Stack Overflow用户
提问于 2021-09-25 13:49:05
回答 1查看 102关注 0票数 0

我运行了这段代码

代码语言:javascript
运行
复制
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.covariance import OAS


n_train = 20  # samples for training
n_test = 200  # samples for testing
n_averages = 50  # how often to repeat classification
n_features_max = 75  # maximum number of features
step = 4  # step size for the calculation


def generate_data(n_samples, n_features):
    """Generate random blob-ish data with noisy features.

    This returns an array of input data with shape `(n_samples, n_features)`
    and an array of `n_samples` target labels.

    Only one feature contains discriminative information, the other features
    contain only noise.
    """
    X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])

    # add non-discriminative features
    if n_features > 1:
        X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
    return X, y


acc_clf1, acc_clf2, acc_clf3 = [], [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:
    score_clf1, score_clf2, score_clf3 = 0, 0, 0
    for _ in range(n_averages):
        X, y = generate_data(n_train, n_features)

        clf1 = LinearDiscriminantAnalysis(solver='lsqr',
                                          shrinkage='auto').fit(X, y)
        clf2 = LinearDiscriminantAnalysis(solver='lsqr',
                                          shrinkage=None).fit(X, y)
        oa = OAS(store_precision=False, assume_centered=False)
        clf3 = LinearDiscriminantAnalysis(solver='lsqr',
                                          covariance_estimator=oa).fit(X, y)

        X, y = generate_data(n_test, n_features)
        score_clf1 += clf1.score(X, y)
        score_clf2 += clf2.score(X, y)
        score_clf3 += clf3.score(X, y)

    acc_clf1.append(score_clf1 / n_averages)
    acc_clf2.append(score_clf2 / n_averages)
    acc_clf3.append(score_clf3 / n_averages)

features_samples_ratio = np.array(n_features_range) / n_train

plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
         label="Linear Discriminant Analysis with Ledoit Wolf", color='navy')
plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
         label="Linear Discriminant Analysis", color='gold')
plt.plot(features_samples_ratio, acc_clf3, linewidth=2,
         label="Linear Discriminant Analysis with OAS", color='red')

plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')

plt.legend(loc=3, prop={'size': 12})
plt.suptitle('Linear Discriminant Analysis vs. ' + '\n'
             + 'Shrinkage Linear Discriminant Analysis vs. ' + '\n'
             + 'OAS Linear Discriminant Analysis (1 discriminative feature)')
plt.show()

这是来自sklearn here的一个示例

我得到了这个错误:

代码语言:javascript
运行
复制
TypeError: __init__() got an unexpected keyword argument 'covariance_estimator'

从这一行开始

代码语言:javascript
运行
复制
clf3 = LinearDiscriminantAnalysis(solver='lsqr',
                                  covariance_estimator=oa).fit(X, y)

在我看来,它在语法上是正确的。所以,我不确定哪里出了问题,或者这个参数(?)可能有版本依赖关系。

任何想法都将不胜感激。

EN

回答 1

Stack Overflow用户

发布于 2021-09-25 16:42:33

最有可能的问题是python版本或sklearn版本。这个例子对我来说很好。

代码语言:javascript
运行
复制
/usr/bin/python3.9
Python 3.9.5 (default, May 19 2021, 11:32:47) 
[GCC 9.3.0] on linux
代码语言:javascript
运行
复制
ls -d /usr/local/lib/python3.9/dist-packages/{scikit,sklearn}*dist-info
/usr/local/lib/python3.9/dist-packages/scikit_learn-1.0.dist-info
/usr/local/lib/python3.9/dist-packages/sklearn-0.0.dist-info
代码语言:javascript
运行
复制
#!/usr/bin/python3.9
import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.covariance import OAS


n_train = 20  # samples for training
n_test = 200  # samples for testing
n_averages = 50  # how often to repeat classification
n_features_max = 75  # maximum number of features
step = 4  # step size for the calculation


def generate_data(n_samples, n_features):
    """Generate random blob-ish data with noisy features.

    This returns an array of input data with shape `(n_samples, n_features)`
    and an array of `n_samples` target labels.

    Only one feature contains discriminative information, the other features
    contain only noise.
    """
    X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])

    # add non-discriminative features
    if n_features > 1:
        X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
    return X, y


acc_clf1, acc_clf2, acc_clf3 = [], [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:
    score_clf1, score_clf2, score_clf3 = 0, 0, 0
    for _ in range(n_averages):
        X, y = generate_data(n_train, n_features)

        clf1 = LinearDiscriminantAnalysis(solver='lsqr',
                                          shrinkage='auto').fit(X, y)
        clf2 = LinearDiscriminantAnalysis(solver='lsqr',
                                          shrinkage=None).fit(X, y)
        oa = OAS(store_precision=False, assume_centered=False)
        clf3 = LinearDiscriminantAnalysis(solver='lsqr',
                                          covariance_estimator=oa).fit(X, y)

        X, y = generate_data(n_test, n_features)
        score_clf1 += clf1.score(X, y)
        score_clf2 += clf2.score(X, y)
        score_clf3 += clf3.score(X, y)

    acc_clf1.append(score_clf1 / n_averages)
    acc_clf2.append(score_clf2 / n_averages)
    acc_clf3.append(score_clf3 / n_averages)

features_samples_ratio = np.array(n_features_range) / n_train

plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
         label="Linear Discriminant Analysis with Ledoit Wolf", color='navy')
plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
         label="Linear Discriminant Analysis", color='gold')
plt.plot(features_samples_ratio, acc_clf3, linewidth=2,
         label="Linear Discriminant Analysis with OAS", color='red')

plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')

plt.legend(loc=3, prop={'size': 12})
plt.suptitle('Linear Discriminant Analysis vs. ' + '\n'
             + 'Shrinkage Linear Discriminant Analysis vs. ' + '\n'
             + 'OAS Linear Discriminant Analysis (1 discriminative feature)')
plt.show()

脚本结果:

https://i.stack.imgur.com/L6WeG.png

票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/69326767

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档