首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >Java环境下Holt平滑系数的估计

Java环境下Holt平滑系数的估计
EN

Stack Overflow用户
提问于 2012-09-24 15:34:20
回答 2查看 5.1K关注 0票数 6

我正在开发一个用Java编写的系统,它能够使用历史数据执行预测。正在使用的算法是这个Holt-温特斯实现的Java端口(mul-plica son)。

我有几个时间序列,我们想分析,我们需要对这些时间序列不同的平滑系数。目前,该算法似乎运行得很好,唯一的问题是如何确定平滑系数(α、β、gamma)的最合理值。

我知道我需要某种非线性优化,但我根本不是数学家,所以我有点迷失在所有这些理论和概念中。

编辑

我有很多不同的时间序列要分析,我想知道是否有一个标准的/足够好的技术(库会更好)来计算平滑参数,我应该给Holt-温特斯算法。

EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2012-09-24 23:11:09

你查过JMulTi了吗

这个问题可能与你非常相关。

任何调查霍尔特-温特斯的人都应该去看看Hyndman教授的网站。他是一个领域专家,也是R.

你说过你想更好地理解这项技术。好消息是,Hyndman正在编写一本免费的教科书,供我们查阅。关于霍尔特-温特斯的具体章节是:http://otexts.com/fpp/7/5/

我知道您想在Java中使用它,但是如果R是一个选项,您应该尝试一下。(有些人建议从R中编写,并将其读入Java程序中。)

更新:

如果您关心的是最初的HW参数,那么我只能想到ets包,它实现了最大似然搜索来获得参数。如果找不到Java实现,最好的选择可能是使用JRI (rJava)并从其中调用etsHoltWinters

希望这能有所帮助。

票数 4
EN

Stack Overflow用户

发布于 2018-02-15 10:57:03

您可以使用Apache ()实现的Nelder优化器 (SimplexOptimizer)。

代码语言:javascript
运行
复制
double[] dataPoints = {
            141, 53, 78, 137, 182, 161, 177,
            164, 70, 67, 129, 187, 161, 136,
            167, 57, 61, 159, 158, 152, 169,
            181, 65, 60, 146, 186, 180, 181,
            167, 70, 62, 170, 193, 167, 176,
            149, 69, 68, 168, 181, 200, 179,
            181, 83, 72, 157, 188, 193, 173,
            184, 61, 59, 158, 158, 143, 208,
            172, 82, 86, 158, 194, 193, 159
};

NelderMeadOptimizer.Parameters op = NelderMeadOptimizer.optimize(dataPoints, 7);
op.getAlpha(); 
op.getBeta(); 
op.getGamma();

现在您需要NelderMeadOptimizer:

代码语言:javascript
运行
复制
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optim.InitialGuess;
import org.apache.commons.math3.optim.MaxEval;
import org.apache.commons.math3.optim.MaxIter;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter;
import org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunction;
import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex;
import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer;

import java.util.List;

public class NelderMeadOptimizer {

    // configuration
    private static final double minValueForOptimizedParameters = 0.001;
    private static final double maxValueForOptimizedParameters = 0.99;
    private static final double simplexRelativeThreshold = 0.0001;
    private static final double simplexAbsoluteThreshold = 0.0001;

    private static final double DEFAULT_LEVEL_SMOOTHING = 0.01;
    private static final double DEFAULT_TREND_SMOOTHING = 0.01;
    private static final double DEFAULT_SEASONAL_SMOOTHING = 0.01;

    private static final int MAX_ALLOWED_NUMBER_OF_ITERATION = 1000;
    private static final int MAX_ALLOWED_NUMBER_OF_EVALUATION = 1000;

    /**
     *
     * @param dataPoints the observed data points
     * @param seasonLength the amount of data points per season
     * @return the optimized parameters
     */
    public static Parameters optimize(double[] dataPoints, int seasonLength) {
        MultivariateFunctionMappingAdapter costFunc = getCostFunction(dataPoints, seasonLength);
        double[] initialGuess = getInitialGuess(dataPoints, seasonLength);
        double[] optimizedValues = optimize(initialGuess, costFunc);
        double alpha = optimizedValues[0];
        double beta = optimizedValues[1];
        double gamma = optimizedValues[2];
        return new Parameters(alpha, beta, gamma);
    }

    /**
     * Optimizes parameters using the Nelder-Mead Method
     * @param initialGuess initial guess / state required for Nelder-Mead-Method
     * @param costFunction which defines that the Mean Squared Error has to be minimized
     * @return the optimized values
     */
    private static double[] optimize(double[] initialGuess, MultivariateFunctionMappingAdapter costFunction) {
        double[] result;

        SimplexOptimizer optimizer = new SimplexOptimizer(simplexRelativeThreshold, simplexAbsoluteThreshold);

        PointValuePair unBoundedResult = optimizer.optimize(
                GoalType.MINIMIZE,
                new MaxIter(MAX_ALLOWED_NUMBER_OF_ITERATION),
                new MaxEval(MAX_ALLOWED_NUMBER_OF_EVALUATION),
                new InitialGuess(initialGuess),
                new ObjectiveFunction(costFunction),
                new NelderMeadSimplex(initialGuess.length));

        result = costFunction.unboundedToBounded(unBoundedResult.getPoint());
        return result;
    }


    /**
     * Defines that the Mean Squared Error has to be minimized
     * in order to get optimized / good parameters for alpha, betta and gamma.
     * It also defines the minimum and maximum values for the parameters to optimize.
     * @param dataPoints the data points
     * @param seasonLength the amount of data points per season
     * @return a cost function  {@link MultivariateFunctionMappingAdapter} which
     * defines that the Mean Squared Error has to be minimized
     * in order to get optimized / good parameters for alpha, betta and gamma
     */
    private static MultivariateFunctionMappingAdapter getCostFunction(final double[] dataPoints, final int seasonLength) {

        MultivariateFunction multivariateFunction = new MultivariateFunction() {
            @Override
            public double value(double[] point) {
                double alpha = point[0];
                double beta = point[1];
                double gamma = point[2];

                if (beta >= alpha) {
                    return Double.POSITIVE_INFINITY;
                }

                List<Double> predictedValues = TripleExponentialSmoothing.getSmoothedDataPointsWithPredictions(dataPoints, seasonLength, alpha, beta, gamma, 1);

                predictedValues.remove(predictedValues.size()-1);

                double meanSquaredError = getMeanSquaredError(dataPoints, predictedValues);
                return meanSquaredError;
            }
        };

        double[][] minMax = getMinMaxValues();
        return new MultivariateFunctionMappingAdapter(multivariateFunction, minMax[0], minMax[1]);
    }

    /**
     * Generates an initial guess/state required for Nelder-Mead-Method.
     * @param dataPoints the data points
     * @param seasonLength the amount of data points per season
     * @return array containing initial guess/state required for Nelder-Mead-Method
     */
    public static double[] getInitialGuess(double[] dataPoints, int seasonLength){
        double[] initialGuess = new double[3];
        initialGuess[0] = DEFAULT_LEVEL_SMOOTHING;
        initialGuess[1] = DEFAULT_TREND_SMOOTHING;
        initialGuess[2] = DEFAULT_SEASONAL_SMOOTHING;
        return initialGuess;
    }

    /**
     * Get minimum and maximum values for the parameters alpha (level coefficient),
     * beta (trend coefficient) and gamma (seasonality coefficient)
     * @return array containing all minimum and maximum values for the parameters alpha, beta and gamma
     */
    private static double[][] getMinMaxValues() {
        double[] min = new double[3];
        double[] max = new double[3];
        min[0] = minValueForOptimizedParameters;
        min[1] = minValueForOptimizedParameters;
        min[2] = minValueForOptimizedParameters;

        max[0] = maxValueForOptimizedParameters;
        max[1] = maxValueForOptimizedParameters;
        max[2] = maxValueForOptimizedParameters;
        return new double[][]{min, max};
    }


    /**
     * Compares observed data points from the past and predicted data points
     * in order to calculate the Mean Squared Error (MSE)
     * @param observedData the observed data points from the past
     * @param predictedData the predicted data points
     * @return the Mean Squared Error (MSE)
     */
    public static double getMeanSquaredError(double[] observedData, List<Double> predictedData){
        double sum = 0;

        for(int i=0; i<observedData.length; i++){
            double error = observedData[i] - predictedData.get(i);
            double sumSquaredError = error * error; // SSE
            sum += sumSquaredError;
        }

        return sum / observedData.length;
    }

    /**
     * Holds the parameters alpha (level coefficient), beta (trend coefficient)
     * and gamma (seasonality coefficient) for Triple Exponential Smoothing.
     */
    public static class Parameters {
        public final double alpha;
        public final double beta;
        public final double gamma;

        public Parameters(double alpha, double beta, double gamma) {
            this.alpha = alpha;
            this.beta = beta;
            this.gamma = gamma;
        }

        public double getAlpha() {
            return alpha;
        }

        public double getBeta() {
            return beta;
        }

        public double getGamma() {
            return gamma;
        }
    };
}
票数 3
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/12568241

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档