首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >为什么在某些机器上增加额外的签入循环会产生很大的差异,而在其他机器上则会产生很小的差异?

为什么在某些机器上增加额外的签入循环会产生很大的差异,而在其他机器上则会产生很小的差异?
EN

Stack Overflow用户
提问于 2013-06-12 16:26:02
回答 1查看 850关注 0票数 7

我一直在做一些测试,看看额外的边界检查在循环中产生了多大的差异。这是因为您在访问数组时考虑了C#、Java等语言插入隐式边界检查的成本。

更新:我在几台额外的计算机上尝试了相同的可执行程序,这给正在发生的事情带来了更多的光明。我列出了最初的电脑,第二位是我的现代笔记本电脑。在我的现代笔记本电脑上,在循环中增加额外的检查只会增加1%到4%的时间,而原来的硬件只会增加3%到30%。

代码语言:javascript
运行
复制
Processor   x86 Family 6 Model 30 Stepping 5 GenuineIntel ~2793 Mhz
Ratio 2 checks : 1 check = 1.0310
Ratio 3 checks : 1 check = 1.2769

Processor   Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz, 2301 Mhz, 4 Core(s), 8 Logical Processor(s)
Ratio 2 checks : 1 check = 1.0090
Ratio 3 checks : 1 check = 1.0393

Processor   Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz, 4 Cores(s)
Ratio 2 checks : 1 check = 1.0035
Ratio 3 checks : 1 check = 1.0639

Processor   Intel(R) Core(TM)2 Duo CPU     T9300  @ 2.50GHz, 2501 Mhz, 2 Core(s), 2 Logical Processor(s)
Ratio 2 checks : 1 check = 1.1195
Ratio 3 checks : 1 check = 1.3597

Processor   x86 Family 15 Model 43 Stepping 1 AuthenticAMD ~2010 Mhz
Ratio 2 checks : 1 check = 1.0776
Ratio 3 checks : 1 check = 1.1451

在下面的测试程序中,第一个函数只检查一个绑定,第二个函数检查两个,第三个检查三个(在调用代码n1=n2=n3中)。我发现比率是两次检查:一次是1.03,三次是大约1.3次。我感到惊讶的是,再增加一次检查会使性能发生如此大的变化。对于我最初的问题,我得到了一个interesting answer concerning the low cost of bounds checking on modern processors,这可能会对这里观察到的差异提供一些启示。

注意,在不打开整个程序优化的情况下编译程序是很重要的;否则编译器可以简单地删除附加的边界检查。

代码语言:javascript
运行
复制
// dotprod.cpp
#include "dotprod.h"

double SumProduct(const double* v1, const double* v2, int n)
{
    double sum=0;
    for(int i=0;
        i<n;
        ++i)
        sum += v1[i]*v2[i];
    return sum;
}

double SumProduct(const double* v1, const double* v2, int n1, int n2)
{
    double sum=0;
    for(int i=0;
        i<n1 && i <n2;
        ++i)
        sum += v1[i]*v2[i];
    return sum;
}

double SumProduct(const double* v1, const double* v2, int n1, int n2, int n3)
{
    double sum=0;
    for(int i=0;
        i<n1 && i <n2 && i <n3;
        ++i)
        sum += v1[i]*v2[i];
    return sum;
}

这段代码最初是使用VisualStudio2010ReleaseWindows构建的(我添加了'C‘标记,因为速度差异背后的原因不太可能是特定于Win32的,也可能不是特定于C++的)。有人能解释一下吗?

下面的代码的其余部分,以获取信息。这里面有一些C++特定的东西。

头文件

代码语言:javascript
运行
复制
// dotprod.h
double SumProduct(const double*, const double*, int n);
double SumProduct(const double*, const double*, int n1, int n2);
double SumProduct(const double*, const double*, int n1, int n2, int n3);

测试线束

代码语言:javascript
运行
复制
// main.cpp

#include <stdio.h>
#include <math.h>
#include <numeric>
#include <vector>

#include <windows.h>

#include "../dotprod/dotprod.h" // separate lib

typedef __int64 timecount_t;
inline timecount_t GetTimeCount()
{
    LARGE_INTEGER li;
    if (!QueryPerformanceCounter(&li)) {
        exit(1);
    }
    return li.QuadPart;
}

int main()
{
    typedef std::vector<double> dvec;
    const int N  = 100 * 1000;

    // Initialize
    dvec v1(N);
    dvec v2(N);
    dvec dp1(N);
    dvec dp2(N);
    dvec dp3(N);
    for(int i=0; i<N; ++i) {
        v1[i] = i;
        v2[i] = log(static_cast<double>(i+1));
    }

    const timecount_t t0 = GetTimeCount();

    // Check cost with one bound
    for(int n=0; n<N; ++n) {
        dp1[n] = SumProduct(&(v1[0]),&(v2[0]),n); 
    }

    const timecount_t t1 = GetTimeCount();

    // Check cost with two bounds
    for(int n=0; n<N; ++n) {
        dp2[n] = SumProduct(&(v1[0]),&(v2[0]),n,n); 
    }

    const timecount_t t2 = GetTimeCount();

    // Check cost with three bounds
    for(int n=0; n<N; ++n) {
        dp3[n] = SumProduct(&(v1[0]),&(v2[0]),n,n,n); 
    }
    const timecount_t t3 = GetTimeCount();

    // Check results
    const double sumSumProducts1 = std::accumulate(dp1.begin(), dp1.end(), 0.0);
    const double sumSumProducts2 = std::accumulate(dp2.begin(), dp2.end(), 0.0);
    const double sumSumProducts3 = std::accumulate(dp3.begin(), dp3.end(), 0.0);
    printf("Sums of dot products: %.1f, %.1f, %.1f\n", sumSumProducts1, sumSumProducts2, sumSumProducts3);

    // Output timings
    const timecount_t elapsed1 = t1-t0;
    const timecount_t elapsed2 = t2-t1;
    const timecount_t elapsed3 = t3-t2;
    printf("Elapsed: %.0f, %.0f, %.0f\n",
        static_cast<double>(elapsed1),
        static_cast<double>(elapsed2),
        static_cast<double>(elapsed3));
    const double ratio2to1 = elapsed2 / static_cast<double>(elapsed1);
    const double ratio3to1 = elapsed3 / static_cast<double>(elapsed1);
    printf("Ratio 2:1=%.2f\n", ratio2to1);
    printf("Ratio 3:1=%.2f\n", ratio3to1);

    return 0;
}

为了生成程序集,我接受了this answer (案例2,关闭整个程序优化)中的建议,生成了下面的asm文件。

代码语言:javascript
运行
复制
; Listing generated by Microsoft (R) Optimizing Compiler Version 16.00.40219.01 

    TITLE   C:\dev\TestSpeed\dotprod\dotprod.cpp
    .686P
    .XMM
    include listing.inc
    .model  flat

INCLUDELIB OLDNAMES

PUBLIC  __real@0000000000000000
PUBLIC  ?SumProduct@@YANPBN0HHH@Z           ; SumProduct
EXTRN   __fltused:DWORD
;   COMDAT __real@0000000000000000
; File c:\dev\testspeed\dotprod\dotprod.cpp
CONST   SEGMENT
__real@0000000000000000 DQ 00000000000000000r   ; 0
; Function compile flags: /Ogtp
CONST   ENDS
;   COMDAT ?SumProduct@@YANPBN0HHH@Z
_TEXT   SEGMENT
tv491 = -4                      ; size = 4
_v1$ = 8                        ; size = 4
_v2$ = 12                       ; size = 4
_n1$ = 16                       ; size = 4
_n2$ = 20                       ; size = 4
_n3$ = 24                       ; size = 4
?SumProduct@@YANPBN0HHH@Z PROC              ; SumProduct, COMDAT

; 25   : {

    push    ebp
    mov ebp, esp
    push    ecx

; 26   :     double sum=0;

    fldz
    push    ebx
    mov ebx, DWORD PTR _v2$[ebp]
    push    esi
    push    edi
    mov edi, DWORD PTR _n1$[ebp]

; 27   :     for(int i=0;

    xor ecx, ecx

; 28   :         i<n1 && i <n2 && i <n3;
; 29   :         ++i)

    cmp edi, 4
    jl  $LC8@SumProduct

; 26   :     double sum=0;

    mov edi, DWORD PTR _v1$[ebp]
    lea esi, DWORD PTR [edi+24]

; 30   :         sum += v1[i]*v2[i];

    sub edi, ebx
    lea edx, DWORD PTR [ecx+2]
    lea eax, DWORD PTR [ebx+8]
    mov DWORD PTR tv491[ebp], edi
$LN15@SumProduct:

; 28   :         i<n1 && i <n2 && i <n3;
; 29   :         ++i)

    mov ebx, DWORD PTR _n2$[ebp]
    cmp ecx, ebx
    jge $LN9@SumProduct
    cmp ecx, DWORD PTR _n3$[ebp]
    jge $LN9@SumProduct

; 30   :         sum += v1[i]*v2[i];

    fld QWORD PTR [eax-8]
    lea edi, DWORD PTR [edx-1]
    fmul    QWORD PTR [esi-24]
    faddp   ST(1), ST(0)
    cmp edi, ebx
    jge SHORT $LN9@SumProduct

; 28   :         i<n1 && i <n2 && i <n3;
; 29   :         ++i)

    cmp edi, DWORD PTR _n3$[ebp]
    jge SHORT $LN9@SumProduct

; 30   :         sum += v1[i]*v2[i];

    mov edi, DWORD PTR tv491[ebp]
    fld QWORD PTR [edi+eax]
    fmul    QWORD PTR [eax]
    faddp   ST(1), ST(0)
    cmp edx, ebx
    jge SHORT $LN9@SumProduct

; 28   :         i<n1 && i <n2 && i <n3;
; 29   :         ++i)

    cmp edx, DWORD PTR _n3$[ebp]
    jge SHORT $LN9@SumProduct

; 30   :         sum += v1[i]*v2[i];

    fld QWORD PTR [eax+8]
    lea edi, DWORD PTR [edx+1]
    fmul    QWORD PTR [esi-8]
    faddp   ST(1), ST(0)
    cmp edi, ebx
    jge SHORT $LN9@SumProduct

; 28   :         i<n1 && i <n2 && i <n3;
; 29   :         ++i)

    cmp edi, DWORD PTR _n3$[ebp]
    jge SHORT $LN9@SumProduct

; 30   :         sum += v1[i]*v2[i];

    fld QWORD PTR [eax+16]
    mov edi, DWORD PTR _n1$[ebp]
    fmul    QWORD PTR [esi]
    add ecx, 4
    lea ebx, DWORD PTR [edi-3]
    add eax, 32                 ; 00000020H
    add esi, 32                 ; 00000020H
    faddp   ST(1), ST(0)
    add edx, 4
    cmp ecx, ebx
    jl  SHORT $LN15@SumProduct
    mov ebx, DWORD PTR _v2$[ebp]
$LC8@SumProduct:

; 28   :         i<n1 && i <n2 && i <n3;
; 29   :         ++i)

    cmp ecx, edi
    jge SHORT $LN9@SumProduct
    mov edx, DWORD PTR _v1$[ebp]
    lea eax, DWORD PTR [ebx+ecx*8]
    sub edx, ebx
$LC3@SumProduct:
    cmp ecx, DWORD PTR _n2$[ebp]
    jge SHORT $LN9@SumProduct
    cmp ecx, DWORD PTR _n3$[ebp]
    jge SHORT $LN9@SumProduct

; 30   :         sum += v1[i]*v2[i];

    fld QWORD PTR [eax+edx]
    inc ecx
    fmul    QWORD PTR [eax]
    add eax, 8
    faddp   ST(1), ST(0)
    cmp ecx, edi
    jl  SHORT $LC3@SumProduct
$LN9@SumProduct:

; 31   :     return sum;
; 32   : }

    pop edi
    pop esi
    pop ebx
    mov esp, ebp
    pop ebp
    ret 0
?SumProduct@@YANPBN0HHH@Z ENDP              ; SumProduct
_TEXT   ENDS
PUBLIC  ?SumProduct@@YANPBN0HH@Z            ; SumProduct
; Function compile flags: /Ogtp
;   COMDAT ?SumProduct@@YANPBN0HH@Z
_TEXT   SEGMENT
tv448 = -4                      ; size = 4
_v1$ = 8                        ; size = 4
_v2$ = 12                       ; size = 4
_n1$ = 16                       ; size = 4
_n2$ = 20                       ; size = 4
?SumProduct@@YANPBN0HH@Z PROC               ; SumProduct, COMDAT

; 15   : {

    push    ebp
    mov ebp, esp
    push    ecx

; 16   :     double sum=0;

    fldz
    push    ebx
    mov ebx, DWORD PTR _v2$[ebp]
    push    esi
    push    edi
    mov edi, DWORD PTR _n1$[ebp]

; 17   :     for(int i=0;

    xor ecx, ecx

; 18   :         i<n1 && i <n2;
; 19   :         ++i)

    cmp edi, 4
    jl  SHORT $LC8@SumProduct@2

; 16   :     double sum=0;

    mov edi, DWORD PTR _v1$[ebp]
    lea edx, DWORD PTR [edi+24]

; 20   :         sum += v1[i]*v2[i];

    sub edi, ebx
    lea esi, DWORD PTR [ecx+2]
    lea eax, DWORD PTR [ebx+8]
    mov DWORD PTR tv448[ebp], edi
$LN19@SumProduct@2:
    mov edi, DWORD PTR _n2$[ebp]
    cmp ecx, edi
    jge SHORT $LN9@SumProduct@2
    fld QWORD PTR [eax-8]
    lea ebx, DWORD PTR [esi-1]
    fmul    QWORD PTR [edx-24]
    faddp   ST(1), ST(0)
    cmp ebx, edi
    jge SHORT $LN9@SumProduct@2
    mov ebx, DWORD PTR tv448[ebp]
    fld QWORD PTR [ebx+eax]
    fmul    QWORD PTR [eax]
    faddp   ST(1), ST(0)
    cmp esi, edi
    jge SHORT $LN9@SumProduct@2
    fld QWORD PTR [eax+8]
    lea ebx, DWORD PTR [esi+1]
    fmul    QWORD PTR [edx-8]
    faddp   ST(1), ST(0)
    cmp ebx, edi
    jge SHORT $LN9@SumProduct@2
    fld QWORD PTR [eax+16]
    mov edi, DWORD PTR _n1$[ebp]
    fmul    QWORD PTR [edx]
    add ecx, 4
    lea ebx, DWORD PTR [edi-3]
    add eax, 32                 ; 00000020H
    add edx, 32                 ; 00000020H
    faddp   ST(1), ST(0)
    add esi, 4
    cmp ecx, ebx
    jl  SHORT $LN19@SumProduct@2
    mov ebx, DWORD PTR _v2$[ebp]
$LC8@SumProduct@2:

; 18   :         i<n1 && i <n2;
; 19   :         ++i)

    cmp ecx, edi
    jge SHORT $LN9@SumProduct@2
    mov edx, DWORD PTR _v1$[ebp]
    lea eax, DWORD PTR [ebx+ecx*8]
    sub edx, ebx
$LC3@SumProduct@2:
    cmp ecx, DWORD PTR _n2$[ebp]
    jge SHORT $LN9@SumProduct@2

; 20   :         sum += v1[i]*v2[i];

    fld QWORD PTR [eax+edx]
    inc ecx
    fmul    QWORD PTR [eax]
    add eax, 8
    faddp   ST(1), ST(0)
    cmp ecx, edi
    jl  SHORT $LC3@SumProduct@2
$LN9@SumProduct@2:

; 21   :     return sum;
; 22   : }

    pop edi
    pop esi
    pop ebx
    mov esp, ebp
    pop ebp
    ret 0
?SumProduct@@YANPBN0HH@Z ENDP               ; SumProduct
_TEXT   ENDS
PUBLIC  ?SumProduct@@YANPBN0H@Z             ; SumProduct
; Function compile flags: /Ogtp
;   COMDAT ?SumProduct@@YANPBN0H@Z
_TEXT   SEGMENT
_v1$ = 8                        ; size = 4
_v2$ = 12                       ; size = 4
?SumProduct@@YANPBN0H@Z PROC                ; SumProduct, COMDAT
; _n$ = eax

; 5    : {

    push    ebp
    mov ebp, esp
    mov edx, DWORD PTR _v2$[ebp]

; 6    :     double sum=0;

    fldz
    push    ebx
    push    esi
    mov esi, eax

; 7    :     for(int i=0;

    xor ebx, ebx
    push    edi
    mov edi, DWORD PTR _v1$[ebp]

; 8    :         i<n;
; 9    :         ++i)

    cmp esi, 4
    jl  SHORT $LC9@SumProduct@3

; 6    :     double sum=0;

    lea eax, DWORD PTR [edx+8]
    lea ecx, DWORD PTR [edi+24]

; 10   :         sum += v1[i]*v2[i];

    sub edi, edx
    lea edx, DWORD PTR [esi-4]
    shr edx, 2
    inc edx
    lea ebx, DWORD PTR [edx*4]
$LN10@SumProduct@3:
    fld QWORD PTR [eax-8]
    add eax, 32                 ; 00000020H
    fmul    QWORD PTR [ecx-24]
    add ecx, 32                 ; 00000020H
    dec edx
    faddp   ST(1), ST(0)
    fld QWORD PTR [edi+eax-32]
    fmul    QWORD PTR [eax-32]
    faddp   ST(1), ST(0)
    fld QWORD PTR [eax-24]
    fmul    QWORD PTR [ecx-40]
    faddp   ST(1), ST(0)
    fld QWORD PTR [eax-16]
    fmul    QWORD PTR [ecx-32]
    faddp   ST(1), ST(0)
    jne SHORT $LN10@SumProduct@3

; 6    :     double sum=0;

    mov edx, DWORD PTR _v2$[ebp]
    mov edi, DWORD PTR _v1$[ebp]
$LC9@SumProduct@3:

; 8    :         i<n;
; 9    :         ++i)

    cmp ebx, esi
    jge SHORT $LN8@SumProduct@3
    sub edi, edx
    lea eax, DWORD PTR [edx+ebx*8]
    sub esi, ebx
$LC3@SumProduct@3:

; 10   :         sum += v1[i]*v2[i];

    fld QWORD PTR [eax+edi]
    add eax, 8
    dec esi
    fmul    QWORD PTR [eax-8]
    faddp   ST(1), ST(0)
    jne SHORT $LC3@SumProduct@3
$LN8@SumProduct@3:

; 11   :     return sum;
; 12   : }

    pop edi
    pop esi
    pop ebx
    pop ebp
    ret 0
?SumProduct@@YANPBN0H@Z ENDP                ; SumProduct
_TEXT   ENDS
END
EN

回答 1

Stack Overflow用户

发布于 2013-06-19 14:13:19

CPU之间的一个很大的区别是流水线优化。

CPU可以并行执行多个指令,直到到达条件分支为止。从这一点开始,CPU可以与分支并行地继续工作,而不是等待直到所有指令都执行完毕,直到条件可用并准备好进行评估为止。如果假设是正确的,那么我们就有了收益。否则,CPU将与另一个分支一起使用。

因此,对于CPU来说,棘手的部分是找到最好的假设,并尽可能多地并行执行指令。

票数 3
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/17070607

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档