我想计算两列表之间的余弦相似性,例如列表1是dataSetI
,列表2是dataSetII
。
假设dataSetI
是[3, 45, 7, 2]
,dataSetII
是[2, 54, 13, 15]
。列表的长度总是相等的。我想把余弦相似度报告为0到1之间的一个数字。
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
def cosine_similarity(list1, list2):
# How to?
pass
print(cosine_similarity(dataSetI, dataSetII))
发布于 2021-05-16 18:13:43
用于计算的Python代码:
import math
from scipy import spatial
def calculate_cosine_distance(a, b):
cosine_distance = float(spatial.distance.cosine(a, b))
return cosine_distance
def calculate_cosine_similarity(a, b):
cosine_similarity = 1 - calculate_cosine_distance(a, b)
return cosine_similarity
def calculate_angular_distance(a, b):
cosine_similarity = calculate_cosine_similarity(a, b)
angular_distance = math.acos(cosine_similarity) / math.pi
return angular_distance
def calculate_angular_similarity(a, b):
angular_similarity = 1 - calculate_angular_distance(a, b)
return angular_similarity
相似搜索
如果希望在嵌入数组中找到最接近的余弦相似性,可以像下面的代码一样使用Tensorflow
。
在我的测试中,闭集值以1x512的形状在1M嵌入(1000000x512)中在不到一秒的时间内找到(使用GPU
)。
import time
import numpy as np # np.__version__ == '1.23.5'
import tensorflow as tf # tf.__version__ == '2.11.0'
EMBEDDINGS_LENGTH = 512
NUMBER_OF_EMBEDDINGS = 1000 * 1000
def calculate_cosine_similarities(x, embeddings):
cosine_similarities = -1 * tf.keras.losses.cosine_similarity(x, embeddings)
return cosine_similarities.numpy()
def find_closest_embeddings(x, embeddings, top_k=1):
cosine_similarities = calculate_cosine_similarities(x, embeddings)
values, indices = tf.math.top_k(cosine_similarities, k=top_k)
return values.numpy(), indices.numpy()
def main():
# x shape: (512)
# Embeddings shape: (1000000, 512)
x = np.random.rand(EMBEDDINGS_LENGTH).astype(np.float32)
embeddings = np.random.rand(NUMBER_OF_EMBEDDINGS, EMBEDDINGS_LENGTH).astype(np.float32)
print('Embeddings shape: ', embeddings.shape)
n = 100
sum_duration = 0
for i in range(n):
start = time.time()
best_values, best_indices = find_closest_embeddings(x, embeddings, top_k=1)
end = time.time()
duration = end - start
sum_duration += duration
print('Duration (seconds): {}, Best value: {}, Best index: {}'.format(duration, best_values[0], best_indices[0]))
# Average duration (seconds): 1.707 for Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz
# Average duration (seconds): 0.961 for NVIDIA 1080 ti
print('Average duration (seconds): ', sum_duration / n)
if __name__ == '__main__':
main()
https://stackoverflow.com/questions/18424228
复制相似问题