首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >opencv中的裁剪图像

opencv中的裁剪图像
EN

Stack Overflow用户
提问于 2013-10-04 15:33:48
回答 1查看 850关注 0票数 3

我有一张图片里面有一些文字。我想把图像发送到OCR,但是图像中有一些白噪声,所以OCR的结果不太好。我试过侵蚀/放大图像,但无法获得完美的阈值来工作。由于图像中的所有文本都是完全水平的,所以我尝试了Hough变换。

当我运行与OpenCV捆绑的示例hough转换程序时,图像如下所示。

问题

  • 除了红线所在的地方,我怎样才能把所有的都变黑呢?还是,我如何才能为红线突出显示的每个区域突出显示一个单独的图像?
  • 我只想把注意力集中在水平线上,我可以丢弃对角线。

当发送到OCR时,这两个选项都对我有效。然而,我想试一试,看看哪一个能获得最好的结果。

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2013-10-04 17:46:46

如何使用输出

  • 除了红线的位置之外,我怎么能把所有的东西都弄黑呢?
    • dotess2()
    • ['Footel text goes he: e\n', 'Some mole hele\n', 'Some Text Here\n']

  • 或者,如何为红线突出显示的每个区域显示单独的图像?
    • dotess1()
    • ['Foolel text goes he: e\n', 'Some mole hele\n', 'Some Text Here\n', 'Directions\n']

代码

代码语言:javascript
运行
复制
# -*- coding: utf-8 -*- 
import cv2
import numpy as np
import math
import subprocess
import os
import operator

#some clean up/init blah blah
junk='\/,-‘’“ ”?.\';!{§_~!@#$%^&*()_+-|:}»£[]¢€¥°><'
tmpdir='./tmp'
if not os.path.exists(tmpdir):
    os.makedirs(tmpdir)
for path, subdirs, files in os.walk(tmpdir):
    for name in files:
        os.remove(os.path.join(path, name))     

#when the preprocessor is not pefect, there will be junk in the result. this is a crude mean of ridding them off
def resfilter(res):
    rd = dict()
    for l in set(res):
        rd[l]=0.

    for l in rd:
        for i in l:
            if i in junk:
                rd[l]-=1
            elif i.isdigit():
                rd[l]+=.5
            else:
                rd[l]+=1
    ret=[]
    for v in sorted(rd.iteritems(), key=operator.itemgetter(1), reverse=True):
        ret.append(v[0])
    return ret

def dotess1():
    res =[]
    for path, subdirs, files in os.walk(tmpdir):
        for name in files:
            fpath = os.path.join(path, name)
            img = cv2.imread(fpath)
            gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

            '''
            #if the text is too small/contains noise etc, resize and maintain aspect ratio
            if gray.shape[1]<100:
                gray=cv2.resize(gray,(int(100/gray.shape[0]*gray.shape[1]),100))
            '''     
            cv2.imwrite('tmp.jpg',gray)
            args = ['tesseract.exe','tmp.jpg','tessres','-psm','7', '-l','eng']
            subprocess.call(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) 
            with open('tessres.txt') as f:
                    for line in f:
                        if line.strip() != '':
                            res.append(line)
    print resfilter(res)


def dotess2():
    res =[]
    args = ['tesseract.exe','clean.jpg','tessres','-psm','3', '-l','eng']
    subprocess.call(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) 
    with open('tessres.txt') as f:
            for line in f:
                if line.strip() != '':
                    res.append(line)
    print resfilter(res)

'''
start of code
'''
img = cv2.imread('c:/data/ocr3.png')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
canny=cv2.Canny(gray,50,200,3)
cv2.imshow('canny',canny)

#remove the actual horizontal lines so that hough wont detect them
linek = np.zeros((11,11),dtype=np.uint8)
linek[5,...]=1
x=cv2.morphologyEx(canny, cv2.MORPH_OPEN, linek ,iterations=1)
canny-=x
cv2.imshow('canny no horizontal lines',canny)

#draw a fat line so that you can box it up
lines = cv2.HoughLinesP(canny, 1, math.pi/2, 50,50, 50, 20)
linemask = np.zeros(gray.shape,gray.dtype)
for line in lines[0]:
    if line[1]==line[3]:#check horizontal
        pt1 = (line[0],line[1])
        pt2 = (line[2],line[3])
        cv2.line(linemask, pt1, pt2, (255), 30)

cv2.imshow('linemask',linemask)

'''
* two methods of doing ocr,line mode and page mode
* boxmask is used to so that a clean image can be saved for page mode
* for every detected boxes, the roi are cropped and saved so that tess3 can be run in line mode
'''

boxmask = np.zeros(gray.shape,gray.dtype)
contours,hierarchy = cv2.findContours(linemask,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
idx=0
for cnt in contours:
    idx+=1
    area = cv2.contourArea(cnt)
    x,y,w,h = cv2.boundingRect(cnt)
    roi=img[y:y+h,x:x+w].copy()
    cv2.imwrite('%s/%s.jpg'%(tmpdir,str(idx)),roi)
    cv2.rectangle(boxmask,(x,y),(x+w,y+h),(255),-1)


cv2.imshow('clean',img&cv2.cvtColor(boxmask,cv2.COLOR_GRAY2BGR))
cv2.imwrite('clean.jpg',img&cv2.cvtColor(boxmask,cv2.COLOR_GRAY2BGR))
cv2.imshow('img',img)

dotess1()
dotess2()
cv2.waitKey(0)
票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/19185191

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档