首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >基于R(气泡图可视化)的编程

基于R(气泡图可视化)的编程
EN

Stack Overflow用户
提问于 2014-10-10 05:25:32
回答 2查看 5.6K关注 0票数 4

我有一个乘客出行频率的数据集:

CountryOrigin -有40多个国家的名字

(印度、澳大利亚、中国、日本、巴丹、巴厘、新加坡)

CountryDestination -有40+国家名称(印度、澳大利亚、中国、日本、巴丹、巴厘、新加坡)

代码语言:javascript
运行
复制
       IND   AUS   CHI   JAP   BAT   SING
 IND     0     4    10    12    24     89
 AUS    19     0    12     9     7     20
 CHI    34    56     0     2     6     18
 JAP    12    17    56     0     2      2
 SING   56    34     7     3    35      0

我需要在x轴的起源位置名称和y轴的目的地名称,频率应该表示为气泡的大小。

EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2014-10-10 06:55:03

我会将ggplot2用于这些(或任何类型的)地块。让我们首先创建一些测试数据:

代码语言:javascript
运行
复制
countries = c('IND', 'AUS', 'CHI', 'JAP', 'BAT', 'SING')
frequencies = matrix(sample(1:100, 36), 6, 6, dimnames = list(countries, countries))
diag(frequencies) = 0

然后编个故事。首先,我们必须将矩阵数据转换成适当的格式:

代码语言:javascript
运行
复制
library(reshape2)
frequencies_df = melt(frequencies)
names(frequencies_df) = c('origin', 'destination', 'frequency')

并使用ggplot2

代码语言:javascript
运行
复制
library(ggplot2)
ggplot(frequencies_df, aes(x = origin, y = destination, size = frequencies)) + geom_point()

票数 3
EN

Stack Overflow用户

发布于 2014-10-13 15:30:55

我想留下另一种方法来可视化这些数据。通过在R中使用circlizemigest包,您可以直观地看到人们是如何移动或旅行的。您需要进行大量的编码,但是如果您按照migest中的演示进行演示,仍然可以创建您想要的东西。您需要一个矩阵和一个数据框架来绘制这个数字。但是,一旦你有了他们的权利,你可以使用代码从演示。在这个例子中,你可以看到来自6个国家的人们是如何旅行的。例如,澳洲人在这些假数据中访问了日本、马来西亚和印度;三条红线到达了这些国家。如果线路更宽,那就意味着有更多的人访问了这些国家。同样,中国人访问了澳大利亚、日本和马来西亚。我把密码留在这里了。

代码语言:javascript
运行
复制
library(circlize)
library(migest)
library(dplyr)

m <- data.frame(order = 1:6,
            country = c("Ausralia", "India", "China", "Japan", "Thailand", "Malaysia"),
            V3 = c(1, 150000, 90000, 180000, 15000, 10000),
            V4 = c(35000, 1, 10000, 12000, 25000, 8000),
            V5 = c(10000, 7000, 1, 40000, 5000, 4000),
            V6 = c(7000, 8000, 175000, 1, 11000, 18000),
            V7 = c(70000, 30000, 22000, 120000, 1, 40000),
            V8 = c(60000, 90000, 110000, 14000, 30000, 1),
            r = c(255,255,255,153,51,51),
            g = c(51, 153, 255, 255, 255, 255),
            b = c(51, 51, 51, 51, 51, 153),
            stringsAsFactors = FALSE)

### Create a data frame
df1 <- m[, c(1,2, 9:11)]

### Create a matrix
m <- m[,-(1:2)]/1e04
m <- as.matrix(m[,c(1:6)])
dimnames(m) <- list(orig = df1$country, dest = df1$country)


### Sort order of data.frame and matrix for plotting in circos

df1 <- arrange(df1, order)

df1$country <- factor(df1$country, levels = df1$country)

m <- m[levels(df1$country),levels(df1$country)]


### Define ranges of circos sectors and their colors (both of the sectors and the links)

df1$xmin <- 0

df1$xmax <- rowSums(m) + colSums(m)

n <- nrow(df1)

df1$rcol<-rgb(df1$r, df1$g, df1$b, max = 255)

df1$lcol<-rgb(df1$r, df1$g, df1$b, alpha=200, max = 255)


##
## Plot sectors (outer part)
##

par(mar=rep(0,4))

circos.clear()

### Basic circos graphic parameters
circos.par(cell.padding=c(0,0,0,0), track.margin=c(0,0.15), start.degree = 90, gap.degree =4)

### Sector details
circos.initialize(factors = df1$country, xlim = cbind(df1$xmin, df1$xmax))

### Plot sectors

circos.trackPlotRegion(ylim = c(0, 1), factors = df1$country, track.height=0.1,
                      #panel.fun for each sector
                      panel.fun = function(x, y) {
                      #select details of current sector
                      name = get.cell.meta.data("sector.index")
                      i = get.cell.meta.data("sector.numeric.index")
                      xlim = get.cell.meta.data("xlim")
                      ylim = get.cell.meta.data("ylim")

                      #text direction (dd) and adjusmtents (aa)
                      theta = circlize(mean(xlim), 1.3)[1, 1] %% 360
                      dd <- ifelse(theta < 90 || theta > 270, "clockwise", "reverse.clockwise")
                      aa = c(1, 0.5)
                      if(theta < 90 || theta > 270)  aa = c(0, 0.5)

                      #plot country labels
                      circos.text(x=mean(xlim), y=1.7, labels=name, facing = dd, cex=0.6,  adj = aa)

                      #plot main sector
                      circos.rect(xleft=xlim[1], ybottom=ylim[1], xright=xlim[2], ytop=ylim[2], 
                                  col = df1$rcol[i], border=df1$rcol[i])

                      #blank in part of main sector
                      circos.rect(xleft=xlim[1], ybottom=ylim[1], xright=xlim[2]-rowSums(m)[i], ytop=ylim[1]+0.3, 
                                  col = "white", border = "white")

                      #white line all the way around
                      circos.rect(xleft=xlim[1], ybottom=0.3, xright=xlim[2], ytop=0.32, col = "white", border = "white")

                      #plot axis
                      circos.axis(labels.cex=0.6, direction = "outside", major.at=seq(from=0,to=floor(df1$xmax)[i],by=5), 
                                  minor.ticks=1, labels.away.percentage = 0.15)
                    })



##
## Plot links (inner part)
##

### Add sum values to df1, marking the x-position of the first links
### out (sum1) and in (sum2). Updated for further links in loop below.

df1$sum1 <- colSums(m)
df1$sum2 <- numeric(n)

### Create a data.frame of the flow matrix sorted by flow size, to allow largest flow plotted first
df2 <- cbind(as.data.frame(m),orig=rownames(m),  stringsAsFactors=FALSE)

df2 <- reshape(df2, idvar="orig", varying=list(1:n), direction="long",
           timevar="dest", time=rownames(m),  v.names = "m")

df2 <- arrange(df2,desc(m))

### Keep only the largest flows to avoid clutter
df2 <- subset(df2, m > quantile(m,0.6))

### Plot links

for(k in 1:nrow(df2)){
    #i,j reference of flow matrix
    i<-match(df2$orig[k],df1$country)
    j<-match(df2$dest[k],df1$country)

#plot link
circos.link(sector.index1=df1$country[i], point1=c(df1$sum1[i], df1$sum1[i] + abs(m[i, j])),
            sector.index2=df1$country[j], point2=c(df1$sum2[j], df1$sum2[j] + abs(m[i, j])),
            col = df1$lcol[i])

#update sum1 and sum2 for use when plotting the next link
df1$sum1[i] = df1$sum1[i] + abs(m[i, j])
df1$sum2[j] = df1$sum2[j] + abs(m[i, j])
}
票数 8
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/26292484

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档