如何推断(.) . (.)的类型是(b -> c) -> (a -> a1 -> b) -> a -> a1 -> c
(我的想法显然是错误的:(.)的类型是(t2->t3) -> (t1->t2) -> t1 -> t3,它应该与(t2->t3) -> [(t1->t2) -> (t1->t3)]相同(也使用[]{}来提高可读性)。因此,(.) . (.)的类型应该类似于{(b2->b3) -> [(b1->b2) -> (b1->b3)]} -> {(a2->a3) -> [(a1->a2) -> (a1->a3)]},它需要(b2->b3)来匹配[(a1->a2) -> (a1->a3)].
但这永远不会导致想要的类型。
怎么啦?
发布于 2015-03-14 21:48:23
表达式(.) . (.)表示(.) (.) (.)。要获得它的类型,让我们从以下位置开始:
(.) :: (t2 -> t3) -> (t1 -> t2) -> t1 -> t3
(.) (.) :: ???让我们将第二个(.)的类型转换为(a2 -> a3) -> (a1 -> a2) -> a1 -> a3。这种类型是t2 -> t3,所以我们得到
t2 = a2 -> a3
t3 = (a1 -> a2) -> a1 -> a3因此,
(.) (.) :: (t1 -> t2) -> t1 -> t3 with the above t2,t3
(.) (.) :: (t1 -> a2 -> a3) -> t1 -> (a1 -> a2) -> a1 -> a3现在,
(.) (.) :: (t1 -> a2 -> a3) -> t1 -> (a1 -> a2) -> a1 -> a3
(.) (.) (.) :: ???让第三个(.)具有(b2 -> b3) -> (b1 -> b2) -> b1 -> b3类型。这是t1 -> a2 -> a3,所以我们
t1 = b2 -> b3
a2 -> a3 = (b1 -> b2) -> b1 -> b3因此
t1 = b2 -> b3
a2 = b1 -> b2
a3 = b1 -> b3结论:
(.) (.) (.) :: t1 -> (a1 -> a2) -> a1 -> a3 with the above t1,a2,a3
(.) (.) (.) :: (b2 -> b3) -> (a1 -> b1 -> b2) -> a1 -> b1 -> b3哪种类型是您期望的类型?
(b -> c ) -> (a -> a1 -> b ) -> a -> a1 -> c一旦类型变量被α转换。
https://stackoverflow.com/questions/29054454
复制相似问题