首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >为什么这个库达内核会产生不确定的结果?

为什么这个库达内核会产生不确定的结果?
EN

Stack Overflow用户
提问于 2015-07-03 13:12:41
回答 1查看 776关注 0票数 1

我在一个更大的代码示例中构造了一个我所面临的问题的最小示例。在这个例子中,我希望找到一些数据ys与一个函数fs的平方误差之和,但是我想一次在多个函数上这样做,所以我将fs创建为一个矩阵。原始数据的长度为gridSize,我希望一次对nGrids函数执行此成本函数,因此fs的大小为nGrids*gridSize

我发现CUDA内核以不确定的方式给出了不可靠的结果,这使我相信我没有正确地执行线程处理(这是我的第一个CUDA内核!)我在这个程序上运行了cuda-memcheck,它没有显示错误。

为了测试这些错误的零散性,我编写了一个脚本,运行了100次,并比较了结果被随机关闭的频率。我发现,当gridSize增长时,关闭它的可能性更大:

代码语言:javascript
运行
复制
gridSize ...  Errors
     300 ...   0/100
     400 ...   0/100
     450 ...   4/100
     500 ...   5/100
     550 ...  55/100
     600 ...  59/100
     650 ... 100/100

这里的想法是让每个块在一个网格上工作,当我想要增强并行性时,只需要调用多个CUDA块。因此,我称之为12个街区,因为这里有12个网格。对于这段代码,我永远不会有超过1000个的gridSize,所以我将把Nthreads留在1024 (因为我的NVIDIA GTX 770上每个块有1024个线程)。

以下是代码:

代码语言:javascript
运行
复制
#include <stdio.h>

#define nGrids 12
#define gridSize 700

void H_get_costs(float* h_xs, float* h_ys, float* h_fs, float* h_costs);
void D_get_costs(float* h_xs, float* h_ys, float* h_fs, float* d_costs);

/**************\
 * cuda Costs *
\**************/
__global__ void cuCosts(float* d_xs, float* d_ys, float* d_fs, float* d_costs) {
    int ir = threadIdx.x;
    int ig = blockIdx.x;

    __shared__ float diff[1024];

    diff[ir] = 0.0;
    __syncthreads();

    if( ir < gridSize-1 && ig < nGrids) {
        diff[ir] =   (d_ys[ir] - d_fs[ig*gridSize + ir])*(d_ys[ir] - d_fs[ig*gridSize + ir]);
        __syncthreads();
        // reduction
        for(int s=1; s < blockDim.x; s*=2) {
            if( ir%(2*s) == 0 && ir+s < gridSize){
                diff[ir] += diff[ir+s];
            }
        }
        __syncthreads();
        d_costs[ig] = diff[0];
    }
    __syncthreads();
}


/****************\
 * Main routine *
\****************/
int main(int argc, char** argv) {

    float h_xs[gridSize];
    float h_ys[gridSize];
    float h_fs[gridSize*nGrids];

    for( int ir = 0; ir < gridSize; ir++) {
        h_xs[ir] = (float)ir/10.0;
        h_ys[ir] = (float)ir/10.0;
    }

    for(int ir = 0; ir < gridSize; ir++) {
        for(int jgrid = 0; jgrid < nGrids; jgrid++) {
            float trand = 2.0*((float)rand()/(float)RAND_MAX) - 1.0;
            h_fs[jgrid*gridSize + ir] = h_ys[ir] + trand;
        }
    }

    float h_costs[nGrids];
    float d_costs[nGrids];

    // get all of the costs (on the host)
    H_get_costs(h_xs, h_ys, h_fs, h_costs);

    // get all of the costs (on the device)
    D_get_costs(h_xs, h_ys, h_fs, d_costs);

    // Print the grids
    /*
    for(int ir = 0; ir < gridSize; ir++) {
        printf("%10.5e %15.5e", h_xs[ir], h_ys[ir]);
        for(int jg = 0; jg < nGrids; jg++) {
            printf("%15.5e", h_fs[jg*gridSize + ir]);
        }
        printf("\n");
    }
    */

   // print the results
    printf("--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
    printf("%-25s  ", "Host ... ");
    for(int ig = 0; ig < nGrids; ig++) {
        printf("%15.5e", h_costs[ig]);
    }
    printf("\n");
    printf("--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
    printf("%-25s  ", "Device ... ");
    for(int ig = 0; ig < nGrids; ig++) {
        printf("%15.5e", d_costs[ig]);
    }
    printf("\n");
    printf("--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
    printf("%-25s  ", "Difference ... ");
    for(int ig = 0; ig < nGrids; ig++) {
        printf("%15.5e", d_costs[ig]-h_costs[ig]);
    }
    printf("\n");

    return 0;
}

/*******************************\
 * get the costs (on the host) *
\*******************************/
void H_get_costs(float* h_xs, float* h_ys, float* h_fs, float* h_costs) {
    for(int ig = 0; ig < nGrids; ig++) { h_costs[ig] = 0.0; }
    for(int ir = 0; ir < gridSize-1; ir++) {
        for(int ig = 0; ig < nGrids; ig++) {
            h_costs[ig] += (h_ys[ir] - h_fs[ig*gridSize + ir])*(h_ys[ir] - h_fs[ig*gridSize + ir]);
        }
    }
}

/**************************\
 * wrapper for cuda costs *
\**************************/
void D_get_costs(float* h_xs_p, float* h_ys_p, float* h_fs_p, float* r_costs) {
    float* d_xs;
    float* d_ys;
    float* d_fs;

    float* d_costs; // device costs
    float* t_costs; // temporary costs

    cudaMalloc( (void**)&d_xs, gridSize*sizeof(float) );
    cudaMalloc( (void**)&d_ys, gridSize*sizeof(float) );
    cudaMalloc( (void**)&d_fs, nGrids*gridSize*sizeof(float) );
    cudaMalloc( (void**)&d_costs, nGrids*sizeof(float) );

    t_costs = (float*)malloc(nGrids*sizeof(float));

    cudaMemcpy( d_xs, h_xs_p, gridSize*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy( d_ys, h_ys_p, gridSize*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy( d_fs, h_fs_p, nGrids*gridSize*sizeof(float), cudaMemcpyHostToDevice);

    int Nthreads = 1024;
    int Nblocks = nGrids;

    cuCosts<<<Nblocks, Nthreads>>>(d_xs, d_ys, d_fs, d_costs);

    cudaMemcpy( t_costs, d_costs, nGrids*sizeof(float), cudaMemcpyDeviceToHost);

    for(int ig = 0; ig < nGrids; ig++) {
        r_costs[ig] = t_costs[ig];
    }

    cudaFree( d_xs );
    cudaFree( d_ys );
    cudaFree( d_fs );
}

如果有关系的话,下面是我的硬件规格:

代码语言:javascript
运行
复制
 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 770"
  CUDA Driver Version / Runtime Version          6.0 / 5.5
  CUDA Capability Major/Minor version number:    3.0
  Total amount of global memory:                 2047 MBytes (2146762752 bytes)
  ( 8) Multiprocessors, (192) CUDA Cores/MP:     1536 CUDA Cores
  GPU Clock rate:                                1084 MHz (1.08 GHz)
  Memory Clock rate:                             3505 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 524288 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.0, CUDA Runtime Version = 5.5, NumDevs = 1, Device0 = GeForce GTX 770
Result = PASS
EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2015-07-03 13:44:15

您的内核代码有多个同步问题,导致了这个问题。首先,在__syncthreads()调用周围有分支,这是数据自动化系统中未定义的行为。然后在还原循环中缺少一个同步点,这意味着翘曲到翘曲积累是不正确的。就像这样:

代码语言:javascript
运行
复制
__global__ void cuCosts(float* d_xs, float* d_ys, 
                        float* d_fs, float* d_costs)
{
    int ir = threadIdx.x;
    int ig = blockIdx.x;

    __shared__ float diff[1024];

    diff[ir] = 0.0;
    __syncthreads();

    if( ir < gridSize-1 && ig < nGrids) {
        diff[ir] =   (d_ys[ir] - d_fs[ig*gridSize + ir])*(d_ys[ir] - d_fs[ig*gridSize + ir]);
    }
    __syncthreads();

    // reduction
    for(int s=1; s < blockDim.x; s*=2) {
        if( ir%(2*s) == 0 && ir+s < gridSize){
            diff[ir] += diff[ir+s];
        }
        __syncthreads();
    }
    d_costs[ig] = diff[0];
}

应该正确使用免责声明,在浏览器中编写,不经过测试,自行使用。

票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/31207729

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档