我正在尝试构建一个NaiveBayes分类器,将数据库中的数据加载为包含(标签、文本)的DataFrame。以下是数据示例(多项标签):
label|             feature|
+-----+--------------------+
|    1|combusting prepar...|
|    1|adhesives for ind...|
|    1|                    |
|    1| salt for preserving|
|    1|auxiliary fluids ...|我对令牌化、秒针、n克和hashTF进行了如下转换:
val selectedData = df.select("label", "feature")
// Tokenize RDD
val tokenizer = new Tokenizer().setInputCol("feature").setOutputCol("words")
val regexTokenizer = new   RegexTokenizer().setInputCol("feature").setOutputCol("words").setPattern("\\W")
val tokenized = tokenizer.transform(selectedData)
tokenized.select("words", "label").take(3).foreach(println)
// Removing stop words
val remover = new        StopWordsRemover().setInputCol("words").setOutputCol("filtered")
val parsedData = remover.transform(tokenized) 
// N-gram
val ngram = new NGram().setInputCol("filtered").setOutputCol("ngrams")
val ngramDataFrame = ngram.transform(parsedData) 
ngramDataFrame.take(3).map(_.getAs[Stream[String]]("ngrams").toList).foreach(println)
//hashing function
val hashingTF = new HashingTF().setInputCol("ngrams").setOutputCol("hash").setNumFeatures(1000)
val featurizedData = hashingTF.transform(ngramDataFrame)转型的产出:
+-----+--------------------+--------------------+--------------------+------    --------------+--------------------+
|label|             feature|               words|            filtered|                  ngrams|                hash|
+-----+--------------------+--------------------+--------------------+------    --------------+--------------------+
|    1|combusting prepar...|[combusting, prep...|[combusting, prep...|    [combusting prepa...|(1000,[124,161,69...|
|    1|adhesives for ind...|[adhesives, for, ...|[adhesives, indus...| [adhesives indust...|(1000,[451,604],[...|
|    1|                    |                  []|                  []|                     []|        (1000,[],[])|
|    1| salt for preserving|[salt, for, prese...|  [salt, preserving]|   [salt   preserving]|  (1000,[675],[1.0])|
|    1|auxiliary fluids ...|[auxiliary, fluid...|[auxiliary, fluid...|[auxiliary fluids...|(1000,[661,696,89...|要构建朴素的Bayes模型,我需要将标签和特性转换为LabelPoint。下面是我尝试将数据have转换为RDD并创建标签点的方法:
val rddData = featurizedData.select("label","hash").rdd
val trainData = rddData.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0), parts(1))
}
val rddData = featurizedData.select("label","hash").rdd.map(r =>   (Try(r(0).asInstanceOf[Integer]).get.toDouble,   Try(r(1).asInstanceOf[org.apache.spark.mllib.linalg.SparseVector]).get))
val trainData = rddData.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble,   Vectors.dense(parts(1).split(',').map(_.toDouble)))
}我得到了以下错误:
 scala> val trainData = rddData.map { line =>
 |   val parts = line.split(',')
 |   LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(',').map(_.toDouble)))
 | }
 <console>:67: error: value split is not a member of (Double,    org.apache.spark.mllib.linalg.SparseVector)
     val parts = line.split(',')
                      ^
<console>:68: error: not found: value Vectors
     LabeledPoint(parts(0).toDouble,   Vectors.dense(parts(1).split(',').map(_.toDouble)))编辑1:
按照下面的建议,我创建了LabelPoint并对模型进行了培训。
val trainData = featurizedData.select("label","features")
val trainLabel = trainData.map(line =>  LabeledPoint(Try(line(0).asInstanceOf[Integer]).get.toDouble,Try(line(1).asInsta nceOf[org.apache.spark.mllib.linalg.SparseVector]).get))
val splits = trainLabel.randomSplit(Array(0.8, 0.2), seed = 11L)
val training = splits(0)
val test = splits(1)
val model = NaiveBayes.train(training, lambda = 1.0, modelType = "multinomial")
val predictionAndLabels = test.map { point => 
   val score = model.predict(point.features)
   (score, point.label)}我得到了40%左右的精度与N克和没有N克,以及不同的散列特征数。我的数据集包含5000行和45个变体标签。有什么方法可以提高模型的性能吗?提前感谢
发布于 2016-01-18 14:16:22
您不需要将您的featurizedData转换为RDD,因为Apache Spark有两个库ML和MLLib,第一个库用于DataFrames,而MLLib使用RDDs。因此,您可以使用ML,因为您已经有了一个DataFrame。
为了实现这一点,您只需要将您的列重命名为(label,features),并适合您的模型,如在NaiveBayes中所示,示例如下所示。
df = sqlContext.createDataFrame([
    Row(label=0.0, features=Vectors.dense([0.0, 0.0])),
    Row(label=0.0, features=Vectors.dense([0.0, 1.0])),
    Row(label=1.0, features=Vectors.dense([1.0, 0.0]))])
nb = NaiveBayes(smoothing=1.0, modelType="multinomial")
model = nb.fit(df)关于您得到的错误,是因为您已经有了一个SparseVector,而且该类没有一个split方法。因此,考虑到这一点,您的RDD几乎有您实际需要的结构,但是您必须将Tuple转换为LabeledPoint。
有一些提高性能的技术,我首先想到的是删除停止词(例如,a,an,to,虽然……),第二个技术是计算文本中不同的单词数,然后手工构造向量,也就是说,如果哈希数较低,不同的单词可能有相同的散列,因此性能不佳。
https://stackoverflow.com/questions/34856042
复制相似问题