我有一个Pandas DataFrame,有一个专栏:
import pandas as pd
df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})
teams
0 [SF, NYG]
1 [SF, NYG]
2 [SF, NYG]
3 [SF, NYG]
4 [SF, NYG]
5 [SF, NYG]
6 [SF, NYG]如何将这一列列表分成两列?
预期结果:
team1 team2
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYG发布于 2016-02-18 20:06:49
您可以将DataFrame构造函数与to_list创建的lists一起使用。
import pandas as pd
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
print (df2)
teams
0 [SF, NYG]
1 [SF, NYG]
2 [SF, NYG]
3 [SF, NYG]
4 [SF, NYG]
5 [SF, NYG]
6 [SF, NYG]df2[['team1','team2']] = pd.DataFrame(df2.teams.tolist(), index= df2.index)
print (df2)
teams team1 team2
0 [SF, NYG] SF NYG
1 [SF, NYG] SF NYG
2 [SF, NYG] SF NYG
3 [SF, NYG] SF NYG
4 [SF, NYG] SF NYG
5 [SF, NYG] SF NYG
6 [SF, NYG] SF NYG为了一个新的DataFrame
df3 = pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
print (df3)
team1 team2
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYG使用apply(pd.Series)的解决方案非常慢:
#7k rows
df2 = pd.concat([df2]*1000).reset_index(drop=True)
In [121]: %timeit df2['teams'].apply(pd.Series)
1.79 s ± 52.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [122]: %timeit pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
1.63 ms ± 54.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)发布于 2018-06-15 17:03:07
更简单的解决方案:
pd.DataFrame(df2["teams"].to_list(), columns=['team1', 'team2'])收益,
team1 team2
-------------
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYG
7 SF NYG如果您想拆分分隔字符串的列而不是列表,也可以这样做:
pd.DataFrame(df["teams"].str.split('<delim>', expand=True).values,
columns=['team1', 'team2'])发布于 2019-08-14 16:24:16
此解决方案保留df2 DataFrame的索引,不像任何使用tolist()的解决方案。
df3 = df2.teams.apply(pd.Series)
df3.columns = ['team1', 'team2']结果如下:
team1 team2
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYGhttps://stackoverflow.com/questions/35491274
复制相似问题