假设我试图将total_cases_age映射到cases_by_age上,其中数据文件位于:
results_grouped_age = results_grouped[['Make', 'age', 'Test Result', 'Number of Cases']].copy()
cases_by_age = results_grouped_age[['Make','age','Test Result','Number of Cases']].groupby(['Make','age','Test Result']).sum().reset_index()
total_cases_age = cases_by_age.groupby(['Make','age'])['Number of Cases'].sum()
然而,我通常会这样做:
cases_by_age['Total Cases'] = cases_by_age['age'].map(total_cases_age)
total_cases_age的索引实际上是“生成和年龄”的组合,而这正是我想要做的。为了更容易地理解我的问题,假设我有表cases_by_age“
Make age Test Result Number of Cases
0 ALFA ROMEO 0-3 ABA 1
1 ALFA ROMEO 0-3 ABR NaN
2 ALFA ROMEO 0-3 F 45
3 ALFA ROMEO 0-3 P 268
4 ALFA ROMEO 0-3 PRS 21
5 ALFA ROMEO 3-5 ABA NaN
6 ALFA ROMEO 3-5 ABR NaN
7 ALFA ROMEO 3-5 F 159
8 ALFA ROMEO 3-5 P 720
最终的结果应该是这样:
Make age Test Result Number of Cases Total Cases by Age
0 ALFA ROMEO 0-3 ABA 1 335
1 ALFA ROMEO 0-3 ABR NaN 335
2 ALFA ROMEO 0-3 F 45 335
3 ALFA ROMEO 0-3 P 268 335
4 ALFA ROMEO 0-3 PRS 21 335
5 ALFA ROMEO 3-5 ABA NaN 879
6 ALFA ROMEO 3-5 ABR NaN 879
7 ALFA ROMEO 3-5 F 159 879
8 ALFA ROMEO 3-5 P 720 879
诸如此类的制造和年龄
如有任何帮助,将不胜感激。
发布于 2016-03-04 18:07:06
您可以执行groupby
-sum
,然后是左-merge
。
pd.merge(
df,
df['Number of Cases'].groupby(df['age']).sum().reset_index().rename(
columns={'Number of Cases': 'Total Cases by Age'}),
how='left')
示例
假设你一开始
df = pd.DataFrame({
'Make': ['ALPHA ROMEO'] * 3,
'age': ['0-3', '0-3', '3-5'],
'Number of Cases': [1, 10, 2]
})
>>> df
Make Number of Cases age
0 ALPHA ROMEO 1 0-3
1 ALPHA ROMEO 10 0-3
2 ALPHA ROMEO 2 3-5
然后groupby
-sum
给出:
>>> df['Number of Cases'].groupby(df['age']).sum().reset_index().rename(
columns={'Number of Cases': 'Total Cases by Age'})
age Total Cases by Age
0 0-3 11
1 3-5 2
这一组合意味着:
>>> pd.merge(
df,
df['Number of Cases'].groupby(df['age']).sum().reset_index().rename(
columns={'Number of Cases': 'Total Cases by Age'}),
how='left')
Make Number of Cases age Total Cases by Age
0 ALPHA ROMEO 1 0-3 11
1 ALPHA ROMEO 10 0-3 11
2 ALPHA ROMEO 2 3-5 2
https://stackoverflow.com/questions/35802775
复制相似问题